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Introduction

In order to perform statistical analysis on the brain cortical surfage,
data are usually diffused to increase the signal-to-noise ratio gnd
Gaussianness [1, 3]. Most of the diffusion equation approaches for
polygonal surfaces are based on the finite element method (FEM)
without the explicit representation of the Laplace-Beltrami operator.

We present two new methods for solving the diffusion equations ¢n
the brain manifolds. The first method uses the explicit representatijon
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for each element;. Having discretized an element, the next step Is where heat kernek; is given by theparametrix expansiofv]:

to assemble all such elementsinincident triangles around vertex
(Figure 1). Combiningn elements,
d|F]
dt
where [F] — [F(p,t), F(pl,t), T ,F(pm,t)]/ and [G] —
(G(p),G(p1), -+ ,G(pm)|. Matrix [C] = (C;;) is called the global

= —[A]7[C][F) (8)

coefficient matrix and comes from all elements containing vertice$

A~ 4
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Ks(p,q) = CXp [_

andd(p, q) is the geodesic distance betweeandy andug(p, q¢) — 1
asp — ¢. Under some regularity conditiotk; is a probability dis-
tribution ono<2. Note thatK, = (K, * f) is the diffusion of signalf
after timeo? so that/, * (K, * f) = K s, * f. Arguing inductively,

of the Laplace-Beltrami operator from and the diffusion equation js andj. It seems we need to solve a huge system of linear equatigns e have an iterated kernel smoothing formula

solved via a simple finite difference scheme that speed up compyta- ltératively; however the first row of the simultaneous ODE (8) give
tion. The second methods uses the heat kernel on the brain manif¢ldsthe diffusion equation at the vertgx= py:

and the diffusion equations are solved via iterative kernel smoothing.

Laplace-Beltrami Operator

Consider orientable smooth twice-differentiable 2-dimensional syr-
faced) c R3. Then we have a parameterizatiorodf: X : D — 05
for some planar domai® c R?. Let T,(052) be a tangent space at
anyp = X (u) € 052 such that partial derivatives

Xi(u) =0,1X (u), Xo(u) = 0,2X (u)

form a basis inl},(0€2). The inner productg;; = (X;, X;) are the
Riemannian metric tensors. Then the isotropic diffusion equation pn
0€) IS given by

OF = AF (1)

with initial condition F'(p, 0) = f(p) and theLaplace-Beltrami oper-
ator

2
1 0 179 ;7 OF
AF: — /2 Z]—. .

\9\1/2 i;l au@(m J 5’u3)

Since the Laplace-Beltrami operatoself adjointwith respect to the
L*(0Q) norm (F, G)aq = [0 F(p)F(p) du(p), we have

(G, AF) g0 = - /a (VEYG) dulp) = (FAG)p0. @)

Figure 1: A typical triangular elements.

Finite Element Method

Let N+ be the number of triangles in the triangular méstmat is the

discrete realization of true manifoéi? (Figure 4). We seek solution
F; to the diffusion equation in each triandié such that the solution
F;(p, t) is continuous across neighboring triangles, i.e. piecewise lip-
ear function. The solutioi’ for S is then

F(p,t) = Z Fi(p, t). (3)

Let p;,, pi,, pi, b€ the vertices of elemeft. In 7}, we interpolater;
linearly by

3
Fi(p,t) = &, (p)F(p;,.t), (4)
=1

where nonnegativg;, are given by thédarycentric coordinategs].
Let G and F'(z,t) be arbitrary piecewise linear functions given by
the barycentric coordinate representation with = G(p; ) and
F; = F(p;,,t). Then from (2), the diffusion equation can be writter)
as

G0z, =~ [ (VE.YG) dutp) ©)

The above integral equation can be written in matrix form:

G IR = —GII0R) ©
where [G;] = (G;, Gy, Gi)\ [F] = (Fi, Fo, F), [A] =
(), Ay = Jpé&a,  dulp), [C] = (C),Ch =

fTi<V§ik, V&) du(p). Since equation (6) should be true for gll;|,
we have a system of ordinary differential equations (ODE)
d|F]
dt

= —[AY) Y[ F] for all i. (7)

dF(p,t
dt

m
)__ > A CLiF (pist), (9)
i k=0

whereAO_k1 is the0k-th element ofA—1. Comparing this with equa-

S

K((,m)*f:f(g*---*l(@*f:K\/mg*f.

m

So the kernel smoothing with large bandwidth can be performed iter-
atively with a smaller bandwidth. In practice, we use truncated and
normalized kernel

tion (1), we can see the right-hand side of equation (9) is the discrete

estimation of the Laplace-Beltrami operator at vegiesimplifying
the matrix inversion using the computational algebraic syst&reE,

_ exp [ — T0]1 5(p, g)

Ks(p,q) =

NS . . d*(p,q
we have the FEM estimation for the Laplace-Beltrami operator given Jpexp [ - 2<02 >} dp(p)dp(q)

by
AF(p) =Y w;i(F(p;) — F(p)) (10)
1=1

with the weightsw; = (cot 6; + cot ¢;)/|T|, wheref,; and¢; are the
two angles opposite to the edge-p and|T| = > ", |T;| is the sum

of the areas of the incident triangles (Figure 1). A similar discrete rep-

resentation that is based on geometric arguments can be found in
The diffusion equation is then solved by the finite difference schem

F(p,tns1) = F(p, tn) + 6tAF (p, tn) (11)
with the iteration step sizét = ¢,,.; — t,. The convergence con-

dition can be found in [4]. Note that the Laplace-Beltrami opel-

ator in the conformal coordinate systgmt’, »?) can be written as

A = 8((221 2+a((322)2' So we can define the FWHM of diffusion smooth-
Ing locally as the FWHM of the corresponding Gaussian kernel in tl
conformal coordinate system. Then diffusion smoothing wNtt-

erations and the step sizéwould be equivalent to Gaussian kerne

smoothing with

FWHM = 4(In 2)'/2V/Nét.

—

for some small region5 C 0f) and indicator functionl g, I.e.
B =Ty U---UT,. Then our iterated heat kernel smoothing of
dataf is given by

[/(va<m>>|<f:\[/(v0>x<--->x<l?/@>kf

m

[6].which is the integral version of the Nadaraya-Watson kernel estimator
e: [2].
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Figure 4: Top: cortical thickness computed at the posterior right
hemisphere of the autistic brain and its iterated heat kernel
smoothing witho = 1 andm = 100 iterations. Bottom: QQ-plot of a
single subject 108,588 thickness measurements showing increased
Gaussianness after smoothing.

Figure 2: Diffusion smoothing was applied to smooth out the mear Conclusions
cal

curvature and projected onto a sphere to show how the hidden su
pattern can be enhanced over time. (a) initial mean curvature. (I
after 20 iterations witldt = 0.2. (c) after 100 iterations.
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Figure 3: Left, middle: Quantitle-Quantile(QQ) plot of cortical
thickness dilatation measurements before and after diffusions
smoothing for 28 subjects [3]. The horizontal axis displays the

guantiles of Gaussian distribution while the vertical axis displays the

) Based on the FEM, we discretized a diffusion equation in a trian-
gular mesh patch centered around a vertex and solved a system of
linear equation. It turns out that the Laplace-Beltrami operator can
be represented as a weighted averaging where the weights are given
In terms of the geometry of triangular mesh elements. Then the diffu-
sion equation is solved via the finite difference with a temporal step
size that satisfies a convergence criterion. An alternate method is
to iteratively convolve with the heat kernel of the Laplace-Beltrami
operator with small bandwidth. Our diffusion and much simpler it-
erated heat kernel smoothing would be highly useful in smoothing
fMRI data [1] and anatomical data [3]. Afterwards statistical infer-
ence based can be based on the random fields theory.
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lterated Heat Kernel Smoothing

The drawback of the FEM approach is for largerfinite difference
scheme (11) may diverge [4]. We have developed a completely c
ferent method based on the heat kernel construction that avoids |
problem. The solution to diffusion equation (1) wher= ¢2/2 is
given by the convolution

used in Figure 4 was generated using FreeSurfer [5].
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