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Diffusion Smoothing on Brain Surface via Finite Element Method
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Introduction

In order to perform statistical analysis on the brain cortical surface,
data are usually diffused to increase the signal-to-noise ratio and
Gaussianness [1, 3]. Most of the diffusion equation approaches for
polygonal surfaces are based on the finite element method (FEM)
without the explicit representation of the Laplace-Beltrami operator.
We present two new methods for solving the diffusion equations on
the brain manifolds. The first method uses the explicit representation
of the Laplace-Beltrami operator from and the diffusion equation is
solved via a simple finite difference scheme that speed up computa-
tion. The second methods uses the heat kernel on the brain manifolds
and the diffusion equations are solved via iterative kernel smoothing.

Laplace-Beltrami Operator

Consider orientable smooth twice-differentiable 2-dimensional sur-
face∂Ω ⊂ R3. Then we have a parameterization of∂Ω: X : D → ∂Ω
for some planar domainD ⊂ R2. Let Tp(∂Ω) be a tangent space at
anyp = X(u) ∈ ∂Ω such that partial derivatives

X1(u) = ∂u1X(u), X2(u) = ∂u2X(u)

form a basis inTp(∂Ω). The inner productsgij = 〈Xi, Xj〉 are the
Riemannian metric tensors. Then the isotropic diffusion equation on
∂Ω is given by

∂tF = ∆F (1)

with initial conditionF (p, 0) = f (p) and theLaplace-Beltrami oper-
ator

∆F =
1

|g|1/2

2∑

i,j=1

∂

∂ui

(
|g|1/2gij ∂F

∂uj

)
.

Since the Laplace-Beltrami operator isself adjointwith respect to the
L2(∂Ω) norm〈F,G〉∂Ω =

∫
∂Ω F (p)F (p) dµ(p), we have

〈G, ∆F 〉∂Ω = −
∫

∂Ω
〈∇F,∇G〉 dµ(p) = 〈F, ∆G〉∂Ω. (2)

Figure 1: A typical triangular elements.

Finite Element Method

Let NT be the number of triangles in the triangular meshS that is the
discrete realization of true manifold∂Ω (Figure 4). We seek solution
Fi to the diffusion equation in each triangleTi such that the solution
Fi(p, t) is continuous across neighboring triangles, i.e. piecewise lin-
ear function. The solutionF for S is then

F (p, t)
.
=

NT∑

i=1

Fi(p, t). (3)

Let pi1, pi2, pi3 be the vertices of elementTi. In Ti, we interpolateFi
linearly by

Fi(p, t) =

3∑

j=1

ξij(p)F (pij, t), (4)

where nonnegativeξik are given by thebarycentric coordinates[8].
Let G andF (x, t) be arbitrary piecewise linear functions given by
the barycentric coordinate representation withGik = G(pik) and
Fik = F (pik, t). Then from (2), the diffusion equation can be written
as

〈G, ∂tF 〉Ti
= −

∫

Ti

〈∇F,∇G〉 dµ(p) (5)

The above integral equation can be written in matrix form:

[Gi]
′[Ai]

d

dt
[Fi] = −[Gi]

′[Ci][Fi]. (6)

where [Gi] = (Gi1, Gi2, Gi3)
′, [Fi] = (Fi1, Fi2, Fi3)

′, [Ai] =

(Ai
kl), A

i
kl =

∫
Ti

ξikξil dµ(p), [Ci] = (Ci
kl), C

i
kl =∫

Ti
〈∇ξik,∇ξil〉 dµ(p). Since equation (6) should be true for all[Gi],

we have a system of ordinary differential equations (ODE)

d[Fi]

dt
= −[Ai]−1[Ci][Fi] for all i. (7)

for each elementTi. Having discretized an element, the next step is
to assemble all such elements inm incident triangles around vertexp
(Figure 1). Combiningm elements,

d[F ]

dt
= −[A]−1[C][F ]. (8)

where [F ] = [F (p, t), F (p1, t), · · · , F (pm, t)]′ and [G] =
[G(p), G(p1), · · · , G(pm)]′. Matrix [C] = (Cij) is called the global
coefficient matrix and comes from all elements containing verticesi
andj. It seems we need to solve a huge system of linear equations
iteratively; however the first row of the simultaneous ODE (8) gives
the diffusion equation at the vertexp = p0:

dF (p, t)

dt
= −

m∑

i,k=0

A−1
0k CkiF (pi, t), (9)

whereA−1
0k is the0k-th element ofA−1. Comparing this with equa-

tion (1), we can see the right-hand side of equation (9) is the discrete
estimation of the Laplace-Beltrami operator at vertexp. Simplifying
the matrix inversion using the computational algebraic systemMAPLE,
we have the FEM estimation for the Laplace-Beltrami operator given
by

∆̂F (p) =

m∑

i=1

wi
(
F (pi)− F (p)

)
(10)

with the weightswi = (cot θi + cot φi)/|T |, whereθi andφi are the
two angles opposite to the edgepi−p and|T | =

∑m
i=1 |Ti| is the sum

of the areas of the incident triangles (Figure 1). A similar discrete rep-
resentation that is based on geometric arguments can be found in [6].
The diffusion equation is then solved by the finite difference scheme:

F (p, tn+1) = F (p, tn) + δt∆̂F (p, tn) (11)

with the iteration step sizeδt = tn+1 − tn. The convergence con-
dition can be found in [4]. Note that the Laplace-Beltrami oper-
ator in the conformal coordinate system(u1, u2) can be written as
∆ = ∂2

∂(u1)2
+ ∂2

∂(u2)2
. So we can define the FWHM of diffusion smooth-

ing locally as the FWHM of the corresponding Gaussian kernel in the
conformal coordinate system. Then diffusion smoothing withN it-
erations and the step sizeδt would be equivalent to Gaussian kernel
smoothing with

FWHM = 4(ln 2)1/2
√

Nδt.

Figure 2: Diffusion smoothing was applied to smooth out the mean
curvature and projected onto a sphere to show how the hidden sulcal

pattern can be enhanced over time. (a) initial mean curvature. (b)
after 20 iterations withδt = 0.2. (c) after 100 iterations.

Figure 3: Left, middle: Quantitle-Quantile(QQ) plot of cortical
thickness dilatation measurements before and after diffusions
smoothing for 28 subjects [3]. The horizontal axis displays the

quantiles of Gaussian distribution while the vertical axis displays the
quantiles of an empirical distribution. How closely the blue dots lie
along the straight red line gives an idea if the underlying empirical
distribution follows Gaussian . Right: Lilliefors statistic measures
the maximum difference between the empirical and a theoretical
Gaussian distributions. Most of cortex shows value less than the
cutoff value 0.19 indicating that the data have been smoothed to

follow Gaussian after.

Iterated Heat Kernel Smoothing

The drawback of the FEM approach is for largerδt, finite difference
scheme (11) may diverge [4]. We have developed a completely dif-
ferent method based on the heat kernel construction that avoids this
problem. The solution to diffusion equation (1) whent = σ2/2 is
given by the convolution

F (p, σ) = Kσ ∗ f (p) =

∫

∂Ω
Kσ(p, q)f (q)µ(q)

where heat kernelKσ is given by theparametrix expansion[7]:

Kσ(p, q) =
1

(2πσ)1/2
exp

[− d2(p, q)

2σ2

][
u0(p, q) + O(σ2)

]

andd(p, q) is the geodesic distance betweenx andy andu0(p, q) → 1
asp → q. Under some regularity condition,Kσ is a probability dis-
tribution on∂Ω. Note thatKσ ∗ (Kσ ∗ f ) is the diffusion of signalf
after timeσ2 so thatKσ ∗ (Kσ ∗ f ) = K√

2σ ∗ f. Arguing inductively,
we have an iterated kernel smoothing formula

K
(m)
σ ∗ f = Kσ ∗ · · · ∗Kσ︸ ︷︷ ︸

m

∗f = K√
mσ ∗ f.

So the kernel smoothing with large bandwidth can be performed iter-
atively with a smaller bandwidth. In practice, we use truncated and
normalized kernel

K̃σ(p, q) =
exp

[− d2(p,q)
2σ2

]
1B(p, q)

∫
B exp

[− d2(p,q)
2σ2

]
dµ(p)dµ(q)

for some small regionB ⊂ ∂Ω and indicator function1B, i.e.
B = T1 ∪ · · · ∪ Tm. Then our iterated heat kernel smoothing of
dataf is given by

K̃σ
(m) ∗ f = K̃σ ∗ · · · ∗ K̃σ︸ ︷︷ ︸

m

∗f

which is the integral version of the Nadaraya-Watson kernel estimator
[2].

Figure 4: Top: cortical thickness computed at the posterior right
hemisphere of the autistic brain and its iterated heat kernel

smoothing withσ = 1 andm = 100 iterations. Bottom: QQ-plot of a
single subject 108,588 thickness measurements showing increased

Gaussianness after smoothing.

Conclusions

Based on the FEM, we discretized a diffusion equation in a trian-
gular mesh patch centered around a vertex and solved a system of
linear equation. It turns out that the Laplace-Beltrami operator can
be represented as a weighted averaging where the weights are given
in terms of the geometry of triangular mesh elements. Then the diffu-
sion equation is solved via the finite difference with a temporal step
size that satisfies a convergence criterion. An alternate method is
to iteratively convolve with the heat kernel of the Laplace-Beltrami
operator with small bandwidth. Our diffusion and much simpler it-
erated heat kernel smoothing would be highly useful in smoothing
fMRI data [1] and anatomical data [3]. Afterwards statistical infer-
ence based can be based on the random fields theory.
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