
HEAT KERNEL SMOOTHING ON UNIT SPHERE

Moo K. Chung

Department of Statistics, Biostatistics, and Medical Informatics
Waisman laboratory for brain imaging and behavior

University of Wisconsin
Madison, WI 53706

mchung@stat.wisc.edu

ABSTRACT

In brain imaging, cortical data such as the cortical thick-
ness, cortical surface curvatures and surface coordinates have
been mapped to a unit sphere for the purpose of visualiza-
tion, surface registration and statistical analysis. Since the
unit sphere provides a readily available parametrization and
basis functions, cortical data can be easily quantied with re-
spect to the spherical parametrization. For the cortical data on
the unit sphere, it is necessary to smooth them to increase the
signal-to-noise ratio and the smoothness for the subsequent
statistical analysis. We present a mathematical framework
for smoothing data on a unit sphere using the heat kernel.
The heat kernel is analytically constructed using the spheri-
cal harmonics and O(n) heat kernel smoothing algorithm is
presented.

1. INTRODUCTION

Due to the highly convoluted nature of the human brain cor-
tex, some sort of normalization onto a parameterized standard
surface is necessary for quantifying cortical data. One such
normalization technique is the cortical attening that maps
the convoluted cortical manifold into a unit sphere with the
minimum geometric distortion [7, 10]. Alternately, one may
atten the cortex using the inverse process of a deformable
surface algorithm, which deforms a sphere to match the cor-
tex [11].

Once the cortical data is mapped onto the unit sphere,
spherical harmonics have been used in modeling the data. The
major use of spherical harmonics in medical imaging has been
in representing the coordinates of closed anatomical bound-
aries [2, 8, 13]. In this study, we use the spherical harmonics
for developing a kernel based smoothing technique for any
type of cortical data.

Previously cortical data have been smoothed by either solv-
ing diffusion equations [1, 3, 4] or the iterative applications
of the rst order heat kernel approximation [5]. However, the
diffusion smoothing approaches require setting up a nite el-
ement scheme, which is computationally nontrivial, and mak-

ing the algorithm converges. The iterative kernel smoothing
method is simpler in comparison; however, since it is based
on the repeated applications of the rst order approximation,
the convergence is very slow. To address the shortcomings
of these methods, we propose a new technique that construct
the heat kernel analytically using the spherical harmonics.
The numerical implementation of the smoothing is validated
against the known analytic solutions.

2. SPHERICAL HARMONICS

Consider the following parametrization of unit sphere S2:

p = (x, y, z) = (sin θ cosϕ, sin θ sinϕ, cos θ)

with θ ∈ [0, π], ϕ ∈ [0, 2π). The Laplacian corresponding to
the parametrization is given by

∆S2 =
1

sin θ
∂

∂θ

(
sin θ

∂

∂θ

)
+

1
sin2 θ

∂2

∂2ϕ
.

For f, h ∈ L2(S2), the space of square integrable functions
in S2, the inner product is dened as

〈f, h〉 =
∫

S2
fh dµ =

∫ 2π

0

∫ π

0
f(θ, ϕ)h(θ, ϕ) sin θdθdϕ,

where dµ = sin θdθdϕ is the area element. The norm is de-
ned as ‖f‖2 = 〈f, f〉. Consider the following eigenequation
∆f + λf = 0. There are 2l + 1 eigenfunctions, denoted as
Ylm(−l ≤ m ≤ l), corresponding to eigenvalue λ = l(l +1).
Ylm is called the spherical harmonic of degree l and order m
[6]. The 2l + 1 spherical harmonics of degree l are

Ylm =






clmP |m|
l (cos θ) sin(|m|ϕ), −l ≤ m ≤ −1,

clm√
2
P 0

l (cos θ), m = 0,

clmP |m|
l (cos θ) cos(|m|ϕ), 1 ≤ m ≤ l,

where clm =
√

2l+1
2π

(l−|m|)!
(l+|m|)! and Pm

l is the associated Leg-
endre polynomials of order m given by

Pm
l (x) =

(1 − x2)m/2

2ll!
dl+m

dxl+m
(x2 − 1)l.
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Fig. 1. Shape of the heat kernel with different bandwidth σ =
0.01, 0.02, 0.05, 0.1, 0.5 from top to bottom. The horizontal
axis is the θ value from the north pole (θ = 0) to the south
pole (θ = π). As σ becomes large, the heat kernel converges
to constant value 1/4π.

Unlike other previous studies [2, 8, 13] that use the complex
numbered spherical harmonics, we are using a real function
with different normalizing constants.

Any f ∈ L2(S2) can be expressed as

f =
∞∑

l=0

l∑

m=−l

f̂lmYlm,

where the Fourier coefcient f̂lm = 〈f, Ylm〉. This can be
viewed as the general Fourier expansion of the Hilbert space
L2(S2) on sphere. If we use up to the d-th degree spherical
harmonics for modeling the cortical data, we need total (2 ·
0+1)+ · · ·+(2 ·d+1) = (d+1)2 number of basis functions.

3. HEAT KERNEL

By extending Mercer’s theorem [6] to L2(S2), any contin-
uous symmetric non-negative denite kernel K(p, q) can be
written as

K(p, q) =
∞∑

l=0

l∑

m=−l

clmYlm(p)Ylm(q) (1)

for some constants clm. The Green’s function of the isotropic
diffusion equation

∂f

∂t
= ∆f (2)

in S2 is called the heat kernel [5] and it can be written in the
Mercer’s theorem with clm = e−l(l+1)σ. Then the heat kernel
is given by

Kσ(p, q) =
∞∑

l=0

[
e−l(l+1)σ

l∑

m=−l

Ylm(p)Ylm(q)
]

(3)

with σ =
√

2t. It directly generalize the Gaussian kernel in
the Euclidean space to S2 [5]. The kernel can be also seen
as the transition probability of the isotropic diffusion process
in S2 and it should be symmetric along the geodesic circle
centered around p, dened by Cp = {q : p · q = const.},
where we used the vector product · in the Cartesian coordinate
system. This implies that the heat kernel is isotropic with
respect to p. Hence, if p · q = p · r, we have Kσ(p, q) =
Kσ(p, r). This property can be used to simplify the expansion
(3). Let us x ϕ = 0 and p be the north pole, i.e. p =
(0, 0, 1). Now by varying q = (sin θ, 0, cos θ) for 0 ≤ θ =
cos−1(p · q) ≤ π, we have Ylm = 0 if m (= 0. Then the inner
summation in (3) can be written as
Theorem. 1.

l∑

m=−l

Ylm(p)Ylm(q) =
2l + 1

4π
P 0

l (cos θ). (4)

This implies that the sum of products of the spherical harmon-
ics is a function of the angle between p and q only. For any p
other than the north pole, the left hand side is also a function
of the angle between p and q. The relationship (4) is usually
called the harmonic addition theorem [9]. Then we have the
following theorem:
Theorem. 2. For any p and q in S2,

Kσ(p, q) =
∞∑

l=0

2l + 1
4π

e−l(l+1)σP 0
l (p · q). (5)

The same result is given in [2] based on more complicated
proof. Our formulation and proof is more straightforward.
Based on formulation (5), the shape of heat kernel is plotted
in Figure 1 with varying bandwidths σ = 0.01, 0.02, 0.05,
0.10, 0.50. As σ increases, the kernel attens out to a constant
value, i.e. limσ→∞ Kσ(p, q) = 1

4π .
The full width at the half maximum (FWHM) of kernel

has been widely used as a unit for measuring the amount of
Gaussian kernel smoothing. For the usual 2D Gaussian kernel

of the form 1
2πσ2 e−

x2+y2

2σ2 , it is given by FWHM =
√

8 ln 2σ.
For heat kernel dened in S2, since we can not nd FWHM
analytically in a close form, we estimate it numerically. The
maximum of the heat kernel is obtained when θ = 0 in (5).
Note P 0

l (1) = 1 for all l. Then we solve numerically for θ in

d∑

l=0

2l + 1
4π

e−l(l+1)σP 0
l (cos θ) =

1
2

d∑

l=0

2l + 1
4π

e−l(l+1)σ.

The FWHM for the heat kernel is then 2θ. We used d = 20
degree spherical harmonics in estimating the FWHM (Figure
2).

4. HEAT KERNEL SMOOTHING

The solution to the diffusion equation (2) with initial func-
tional measurement h(p) at time t = σ2/2 is given by the
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Fig. 2. Plot of FWHM (vertical) vs. bandwidth σ (horizon-
tal). The blue line is for the heat kernel and red line is for the
isotropic Gaussian kernel in R2.

convolution:

Kσ ∗ h(p) =
∫

S2
Kσ(p, q)h(q) dµ(q) (6)

=
∞∑

l=0

wjPl(p), (7)

where the weighting factor wl = (2l + 1)e−l(l+1)σ and inte-
gral

Pl(q) =
1
4π

∫

S2
P 0

l (p · q)h(q) dµ(q).

The heat kernel smoothing can be given a geometric interpre-
tation in the following way. Since the associated Legendre
polynomial P 0

l for the rst two terms are P 0
0 (p · qk) = 1 and

P 0
1 (p · qk) = p · qk, we can see that the rst term

P0(p) =
1
4π

∫

S2
h(q) dµ(q)

measures the average signal over the unit sphere while the
second term

P1(p) =
1
4π

∫

S2
p · qh(q) dµ(q)

measures the rst moment of the signal with respect to p. The
higher order terms of Pl(p) can be computed using the recur-
rence relation for the associated Legendre polynomial

P 0
l+1(p · q) =

2l + 1
l + 1

p · qP 0
l (p · q) − l

l + 1
P 0

l−1(p · q) (8)

so P 0
l (p ·q) is the l-th degree polynomial of p ·q. Hence Pl(p)

measures a signal quantity involving higher order moments.

5. NUMERICAL IMPLEMENTATION

The S2 surface is realized as a mesh with 81,920 triangles.
It is constructed from the deformable surface algorithm that

Fig. 3. Heat kernel smoothing on cortical thickness. (a) orig-
inal cortical thickness data mapped onto a unit sphere, (b, c)
smoothing with d = 40, and σ = 0.0001, 0.001 respectively.
(d, e, f) smoothing with d = 20, and σ = 0.001, 0.01, 0.1
respectively.

gives a direct homological map from the human cortical sur-
face to S2 [4, 11]. Integral of form

∫
S2 f(q) dµ(q) is approx-

imated as a limit of the Riemann sum over triangle elements
following the framework of nite element method (FEM) [4].
Let n = 40, 962 be the total number of nodes in the mesh.
Suppose that triangular elements Tk1 , · · · , Tkm are adjacent
to each other at given node qk (1 ≤ k ≤ n). Then the total
area of the mesh is computed as

∫

S2
dµ

.=
1
3

n∑

k=1

km∑

i=1

|Tki | = 12.565

while the area of the unit sphere is 4π = 12.566, the differ-
ence of less than 0.0001%. So our triangular mesh is suf-
ciently ne enough to realize the S2 surface accurately. The
accuracy of our heat kernel smoothing is only restricted to the
mesh resolution and the Riemann sum approximation should
converges to the integral as the mesh resolution decreases.

In our numerical implementation, we avoided using for-
mulation (7) due to the fact that the integral kernel P 0

l (p · q)
is not separable. In this case, the running time is O(n2) for
smoothing on every nodes in the mesh. On the other hand,
if we use the form of the separable kernel (3), the smoothing
can be done in O(n). So our O(n) implementation is to use
the form

Kσ∗h(p) =
d∑

l=0

l∑

m=−l

e−l(l+1)σYlm(p)
∫

S2
Ylm(q)h(q) dµ(q).

The integral is approximated as

∫

S2
f(q) dµ(q) .=

1
3

n∑

k=1

km∑

i=1

f(qk)|Tki |.
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l′ m′ integral kernel smoothing
1 1 0.9999 −3.8854 · 10−17

10 5 0.9999 −3.7597 · 10−17

10 7 0.9999 4.9109 · 10−17

15 10 0.9998 −4.0601 · 10−8

20 4 1.0001 9.7029 · 10−5

20 10 0.9999 1.6212 · 10−4

20 20 0.9999 −1.1174 · 10−4

Table 1. Validation of heat kernel smoothing with test func-
tion Yl′m′ .

For an illustration, we mapped the cortical thickness data [5]
obtained from MRI onto a unit sphere. Then we performed
the smoothing with various bandwidths σ and d (Figure 3).

The numerical implementation is validated against ana-
lytical solutions. Let h = el′(l′+1)Yl′m′ be an analytic test
function. Then Kσ ∗ h(p) can be written as

el′(l′+1)
∞∑

l=0

l∑

m=−l

e−l(l+1)σYlm(p)
∫

S2
Ylm(q)Yl′m′(q) dµ(q)

= el′(l′+1)
∞∑

l=0

l∑

m=−l

e−l(l+1)σYlm(p)δll′δmm′ = Yl′m′(p),

where δll′ is the Kroneker’s delta. This exact analytical form
gives a criteria for estimating the accuracy of our numerical
method. The analytical solution is compared with the numer-
ical approximation. The table 1 shows the result for selective
l′ and m′ with σ = 0.01 and d = 20. The third column shows
the numerical computation of integral

∫

S2
Y 2

l′m′(p) dp = 1

showing the accuracy up to 3 decimal places. The fourth col-
umn shows the average difference between the numerical ap-
proximation and the expected theoretical value Yl′m′ .

6. CONCLUSIONS

We have developed a mathematical framework for performing
kernel smoothing in a unit sphere. The heat kernel was con-
structed analytically using the spherical harmonics. Based on
the FWHM vs σ plot in Figure 2, we conclude that the heat
kernel attens out more rapidly than the corresponding Gaus-
sian kernel. Based on the exact mathematical formulation,
we developed the O(n) smoothing algorithm. The algorithm
is validated against the analytical solution.
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