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Introduction

In brain imaging, cortical data such as cortical thick-
ness, surface curvatures and surface coordinates have
been mapped to a unit sphere for visualization, surface
registration and data analysis.
To increase the signal-to-noise ratio, the cortical data
have been mainly smoothed by either solving diffusion
equations [1, 2, 3] or the iterative applications of the first
order heat kernel approximation [4]. However, the diffu-
sion smoothing approaches require setting up a finite el-
ement scheme, which is computationally nontrivial, and
making the algorithm converges. The iterative kernel
smoothing method is simpler in comparison; however,
since it is based on the repeated applications of the first
order approximation, the convergence is very slow.
To address these problems, we propose a new tech-
nique that construct the heat kernel analytically using the
spherical harmonics.

Spherical Harmonics

Given the following parametrization of unit sphereS2

p = (sin θ cos ϕ, sin θ sin ϕ, cos θ),

the corresponding spherical Laplacian is given by
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For f, h ∈ L2(S2), the space of square integrable func-
tions inS2, the inner product is

〈f, h〉 =
∫

S2
fh dµ =

∫ 2π

0

∫ π

0
f (θ, ϕ)h(θ, ϕ) sin θdθdϕ,

wheredµ = sin θdθdϕ is the area element. The orthonor-
mal basis functions ofL2(S2) are given by thespherical
harmonicof degreel and orderm, denoted byYlm:
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wherePm
l is the associated Legendre polynomials of or-

derm. So anyf ∈ L2(S2) can be expressed as

f =
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l=0

l∑
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flmYlm,

where the Fourier coefficientflm = 〈f, Ylm〉. This is the
basis of the spherical harmonic (SPHARM) representa-
tion used in computational neuroanatomy [5, 7].

Figure 1: Spherical harmonics of for degree
l = 5, 30, 45.

Heat Kernel

Theheat kernelor Gauss-Weistrass kernel [4] is defined
as

Kσ(p, q) =
∞∑

l=0

l∑

m=−l

e−l(l+1)σYlm(p)Ylm(q).

It directly generalize the Gaussian kernel in the Eu-
clidean space toS2 [4]. The heat kernel can be written in
more compact form as

Kσ(p, q) =
∞∑

l=0

2l + 1

4π
e−l(l+1)σP 0

l (p · q).

The shape of heat kernel is shown in Figure 2 for vary-
ing θ = cos−1(p · q) with different bandwidthsσ = 0.01,
0.02, 0.05, 0.10, 0.50.
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Figure 2: Shape of the heat kernel with different
bandwidthσ = 0.01, 0.02, 0.05, 0.1, 0.5 from top to
bottom. The horizontal axis is from the north pole

(θ = 0) to the south pole (θ = π). As σ becomes large,
the heat kernel converges to constant value1/4π.

The full width at the half maximum (FWHM) of kernel
has been widely used as a unit for measuring the amount
of kernel smoothing. For the usual 2D Gaussian kernel

of the form 1
2πσ2e

−x2+y2

2σ2 , it is given by

FWHM =
√

8 ln 2σ.

For the heat kernel inS2, since we can not find FWHM
analytically in a close form, we estimate it numerically
by solving forθ in
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whered is chosen before hand (Figure 3).
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Figure 3: Plot of FWHM (vertical) vs. bandwidthσ
(horizontal). The blue line is for the heat kernel and red

line is for the isotropic Gaussian kernel.

Heat Kernel Smoothing

We define heat kernel smoothing of dataf to be

Kσ ∗ f (p) =
∫

S2
Kσ(p, q)f (q) dµ(q)

=
∞∑

l=0

l∑

m=−l

e−l(l+1)σflmYlm(p).

Note that this is the solution to the isotropic diffusion
equation

∂g

∂σ
= ∆g, g(σ = 0, p) = f (p).

Figure 4: Heat kernel smoothing on cortical thickness.
(a) original cortical thickness data mapped onto a unit
sphere, (b, c) smoothing withd = 40, andσ = 0.0001,
0.001 respectively. (d, e, f) smoothing withd = 20, and

σ = 0.001, 0.01, 0.1 respectively.

Numerical Implementation

TheS2 surface is realized as a triangle mesh. It is con-
structed from the deformable surface algorithm that gives
a direct homological map from the human cortical sur-
face toS2 [3, 6]. The Fourier coefficients are estimated

using the numerical integration technique. The total area
of the mesh is 12.565 while the area of the unit sphere is
4π = 12.566, the difference of less than0.0001%. So our
triangular mesh is sufficiently fine enough to realize the
S2 surface accurately. As an illustration, we mapped the
cortical thickness data [4] obtained from MRI ontoS2

mesh. We performed heat kernel smoothing with various
bandwidthsσ on the thickness data (Figure 4).

Applications

As an application, we show how to estimate the cortical
thickness by reconstructing the cortex using the heat ker-
nel smoothing technique. The Cartesian coordinates of
the both outer and inner surfaces are mapped ontoS2 via
the deformable surface algorithm (Figure 5).

Figure 5: Heat kernel smoothing of coordinates

Then the surfaces are reconstructed with varyingσ and
up tol = 80 degrees of spherical harmonics (Figure 6).

Figure 6: Original cortex and its reconstruction at
differentσ = 0, 0.0001, 0.001, 0.01 with up tol = 80

degree harmonics. Whenσ = 0, the heat kernel
smoothing gives the traditional SPHARM [5, 7].

By averaging the Fourier coefficients of heat kernel
smoothing, we can construct the average cortical surface
for 12 normal subjects (Figure 7).

Figure 7: Average template constructed by averaging
the coefficients of heat kernel smoothing.

The cortical thickness is then estimated by taking the
mean square of the Fourier coefficients of heat kernel
smoothing (Figure 8).

Figure 8: Cortical thickness estimation for different
σ = 0, 0.0001, 0.001, 0.01.

Conclusions

We have developed a theoretical framework for perform-
ing heat kernel smoothing on a unit sphere. The heat
kernel was constructed analytically using the spherical
harmonics.
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