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We study the connection between genotype and imaging phenotype in order to detect possible genetic risk factors in
mild cognitive impairment (MCI) and Alzheimer’s disease (AD). We focus on identifying hippocampal shape changes
related to the G allele of a common SNP of the Interleukin-6 (IL-6) gene in the -174 promoter region. In the analysis, we
propose a novel surface signal extraction method and integrate it with a set of powerful surface processing techniques,
including spherical harmonic surface modeling, quaternion-based 3D shape registration, and statistical inference on
the surface using heat kernel smoothing and random field theory. Our analysis results in several interesting findings
that suggest combining imaging phenotypes and genetic profiles has the potential to elucidate biological pathways for
better understanding MCI and AD.

1. INTRODUCTION

Mild cognitive impairment (MCI)1 is character-

ized by memory complaints and impairment in

the absence of dementia and confers a high risk

for Alzheimer’s disease (AD). Brain imaging meth-

ods for identifying medial temporal morphological

abnormalities2, 3 in circuits required for learning and

memory have been studied for early diagnosis and

treatment of MCI and AD. However, the connection

between genotype and imaging phenotype has yet to

be established. Doing so will facilitate identification

of possible genetic risk factors for MCI and AD.

Apolipoprotein E (APOE), the one gene with a

known robust association to increased risk of late-

onset AD4, also appears related to subtle cognitive

and neuroimaging changes well before disease onset5.

Late-onset AD is a complex disorder that undoubt-

edly involves many genes and polymorphisms in ad-

dition to APOE. For example, the Interleukin-6 (IL-

6) gene is a proinflammatory cytokine involved in

neuronal signaling that appears to reduce hippocam-

pal neurogenesis6, and the single-nucleotide poly-

morphism (SNP) of IL-6 in the -174 promoter region

appears to modulate the reduction of medial tempo-

ral volume and gray matter concentration in older

adults with memory decline7.

In this work, we extend the techniques used in

combined neuromaging-genetic analysis of MCI from

volumetric analysis2 to shape analysis. We present a

computational framework that aims to localize the

interaction between morphometric changes of the

hippocampus and the IL-6 -174 SNP. A novel surface

signal extraction method is proposed and integrated

with a set of powerful surface processing techniques8,

including spherical harmonic surface modeling9,

quaternion-based 3D shape registration10, and sta-

tistical inference on the surface using heat kernel

smoothing and random field theory11. We hope that

this surface-based shape analysis can provide impor-

tant information above and beyond simple volume

measurements and localize regionally specific struc-

tural changes related to the IL-6 -174 SNP in MCI.

The rest of the paper is organized as follows. Sec-

tion 2 describes our method. Section 3 presents our

experimental results. Section 4 concludes the paper.

2. METHODS

This section describes our data set as well as surface

modeling, shape description, surface signal extrac-
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tion, and statistical shape analysis approaches.

2.1. Data Set

Participants include healthy controls (HC, n = 40),

euthymic older adults with cognitive complaints

(CC, n = 39) but intact neuropsychological perfor-

mance, and patients with amnestic MCI (n = 37).

Table 1 shows several participant characteristics2.

Table 1. Participant Characteristics

Age Education Sex IL-6
(mean±std) (mean±std) (M,F) (CC,CG,GG)

HC 70.6±5.0 16.6±2.7 12, 28 10, 13, 17
CC 72.8±6.1 16.5±2.7 16, 23 7, 25, 7
MCI 72.2±6.9 16.4±3.2 21, 16 10, 18, 9
ALL 71.8±6.1 16.6±2.7 49, 67 27, 56, 33

MRI scan data are acquired on a 1.5 Tesla GE

scanner as a T1-weighted SPGR coronal series. The

hippocampi are segmented using the BRAINS soft-

ware package12. A 3D binary image of isotropic vox-

els is reconstructed from each set of 2D hippocampal

segmentation results.

2.2. Surface Modeling

The spherical harmonic (SPHARM) description9 is

used for modeling all the hippocampal surfaces. The

first step is to create a continuous and uniform map-

ping from the object surface to the surface of a unit

sphere. It is formulated as a constrained optimiza-

tion problem with the goals of topology and area

preservation and distortion minimization. The re-

sult is a bijective mapping between each point v on

a surface and a pair of spherical coordinates θ and

φ: v(θ, φ) = (x(θ, φ), y(θ, φ), z(θ, φ))T .

Now the object surface can be expanded into a

complete set of spherical harmonic basis functions

Y m
l , where Y m

l denotes the spherical harmonic of

degree l and order m. The expansion takes the form:

v(θ, φ) =

∞∑

l=0

l∑

m=−l

c
m
l Y m

l (θ, φ),

where c
m
l = (cm

xl, c
m
yl, c

m
zl)

T . The coefficients c
m
l up to

a user-desired degree can be estimated by solving a

set of linear equations in a least squares fashion. The

object surface can be reconstructed using these coef-

ficients, and using more coefficients leads to a more

detailed reconstruction.

2.3. Shape Description

Shape information can be extracted by removing the

effects of scaling, rotation and translation. To re-

move the scaling effect, we examine several schemes:

(1) the hippocampal volume is normalized; (2) the

total brain tissue volume is normalized; and (3) the

intracranial volume is normalized. One of our ob-

jectives is to determine what scaling approach will

be appropriate for investigating correlations between

hippocampal shape and the IL6 -174 SNP and simi-

lar questions.

Fig. 1. Landmark representation for hippocampal shapes:
mesh vertices are landmarks.

Rotation and translation effects can be removed

by aligning 3D models to a template. Although the

first order ellipsoid is often used to align SPHARM

models9, it does not work for multi-object com-

plexes. In our analysis, we want to examine not

only individual shapes of left or right hippocampi

but also combined left and right hippocampal com-

plexes. To create a shape descriptor for either a

single hippocampus or a two-hippocampus complex,

we employ a multiple object alignment method10 de-

signed for SPHARM models. We briefly describe this

method in the following paragraph.

First, the parameter space of each hippocampal

surface is aligned according to the first order ellipsoid

for establishing the correspondence across subjects.

Next, after removing scaling (as described above),

landmarks are created by a uniform sampling of one

or two surfaces for each shape configuration. Finally,

a quaternion-based algorithm is used to align these

landmarks through least square rotation and trans-

lation: subjects are first aligned to a certain control
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and then aligned to the mean shape iteratively un-

til the mean converges. Now each hippocampus or

hippocampal pair is described by a set of normalized

landmarks and these landmark sets are comparable

across subjects (Fig. 1).

2.4. Surface Signal Extraction

In order to perform statistical shape analysis, we

first need to define signals or variables on the sur-

face to describe a shape. We define the mean of all

the healthy controls as our template (i.e., the refer-

ence shape). Thus, the template xt can be thought

of as an average and normal hippocampal shape. For

an individual shape x, we can directly use its defor-

mation field δ(x) = x − xt relative to the template

xt to describe it. However, for each surface land-

mark, there are three related elements (correspond-

ing to x, y, z coordinates) in δ(x) that are needed to

capture local shape changes. These elements are ob-

viously correlated to one another, which can cause a

multiple comparison issue in statistical analysis.

For simplicity, some previous studies8 look at

only the deformation component along the surface

normal (NML) direction to reduce the number of

variables considered for each landmark and remove

the multiple comparison issue caused by the x, y, z

coordinates. However, in most cases, this approach

introduces information loss because the deforma-

tion component along the tangential plane is usually

nonzero and is ignored in this case.

To minimize the information loss, we propose an

alternative approach as follows. First, we perform

principal component analysis13 (PCA) to find the

principal axis of the data (i.e., the direction defined

by the first principal component). After that, we

use the deformation component along this direction

as the surface signal. Using this approach, we can

guarantee that the variance of the reduced data is

maximized and the information loss is minimized.

Since our goal is to detect shape changes between

two groups, we propose a second approach for surface

signal extraction that examines the most “discrimi-

native” direction. In this approach, we use Fisher’s

linear discriminant13 (FLD) to find such a direction;

and then use the deformation component along this

direction as the surface signal. FLD projects a train-

ing set consisting of two classes in our case onto

one dimension such that the ratio of between-class

and within-class variability is maximized, which oc-

curs when the FLD projection places different classes

into distinct and tight clumps. Our experimental re-

sults show that the FLD direction is more sensitive

than NML and PCA directions for detecting shape

changes between groups.

Fig. 2 shows a sample visualization that illus-

trates the three surface signal extraction methods de-

scribed above. The left plot includes a local submesh

of our shape template. Given a data set, all the de-

formation fields corresponding to the submesh center

are plotted as magenta stars and green circles to dis-

tinguish two shape groups. Three directions (NML

in red, PCA in blue, and FLD in black) for surface

signal extractions are generated based on the defor-

mation fields. The right plot shows the deformation

components along these three directions. From this

plot we observe that, while PCA captures more of

the data variance (i.e., the mean distance from the

points to the PCA line is smallest), FLD separates

the deformation components better (the groups clus-

ter better in the projection line on the right).

Fig. 2. Three methods for surface signal extraction: NML,
PCA, FLD. The left plot shows a local submesh of the tem-
plate, deformation fields (corresponding to the submesh cen-
ter) for two shape groups (magenta stars versus green circles),
and three directions (NML in red, PCA in blue, and FLD
in black). The right plot shows the deformation components
along the three directions.

2.5. Statistical Analysis

In order to increase the signal-to-noise ratio (SNR),

Gaussian kernel smoothing is desirable in many sta-

tistical analyses. Since the geometry of a hip-

pocampal surface is non-Euclidean, we cannot di-

rectly apply Gaussian kernel smoothing. Instead,

we employ heat kernel smoothing, which generalizes

Gaussian kernel smoothing to arbitrary Riemannian
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manifolds11. Heat kernel smoothing is implemented

by constructing the kernel of a heat equation on man-

ifolds that is isotropic in the local conformal coordi-

nates. By smoothing the data on the hippocampal

surface, the SNR will increase and it will be easier to

localize shape changes. Fig. 3 shows a sample heat

kernel smoothing result.

Fig. 3. Heat kernel smoothing: The left plot shows the ini-

tial signal mapped on to the template. The right plot shows
the result after smoothing the surface using a heat kernel of
FWHM = 8 mm. Our scaling scheme always makes a single
hippocampus template have a volume of 3390 mm3, and the
hippocampal pair template a volume of 6780 mm3.

To perform statistical inference directly on the

surface, surface signals are modeled as Gaussian

random fields. This theoretical model assumption

has been checked using both the Lilliefors test and

quantile-quantile plots for our data. Detecting the

region of statistically significant shape changes can

be done via thresholding the maximum of the t ran-

dom field defined on the hippocampal surface. The

p value of the local maxima of the t field will give a

conservative threshold. See Ref. 11 for more details

on how to create a corrected p value map using a t

value map and other related information.

3. RESULTS

We perform group analyses for HC versus each possi-

ble combination of an IL-6 -174 SNP genotype (C/C,

C/G, G/G) and a diagnostic group (CC, MCI). In

the experiments, we use FWHM = 8mm for heat

kernel smoothing. We test different scaling schemes:

normalizing for hippocampal volume (HP), brain tis-

sue volume (BV), and intracranial volume (IC). We

examine not only left or right hippocampi individu-

ally but also two-hippocampus complexes. Note that

the combined case is not a direct combination of two

single cases. During the alignment, the spatial rela-

tion between left and right hippocampi are kept in

the combined case but not in any of the single cases.

We also test the NLM, PCA, and FLD surface signal

extraction methods. The FLD method has the best

performance; therefore, the results reported below

are all based on the FLD signal extraction method.

Fig. 4 shows the resulting t-maps of sev-

eral analyses using the IC scaling scheme.

Positive/negative t-values indicate where in-

ward/outward deformations of the mean shape tem-

plate are required to match the second class. Note

that the first class in our analyses is always HC. Sta-

tistically significant regions of shape changes only

appear between HC and G/G MCI. These results

suggest that the G/G MCIs are the most abnor-

mal in shape relative to controls, while G/C and

C/C genotype MCIs and CC group are unaffected in

terms of hippocampal shape.

Fig. 4. Resulting t-maps of several analyses using IC scaling:
Positive/negative t-values indicate where inward/outward de-
formations of the mean shape template are required to match
the second class. (HC is the first class). The G/G MCIs are
the most abnormal in shape relative to HCs.

In order to identify regions of statistically signif-

icant structural changes between HC and G/G MCI,

we threshold the t-map at the corrected p value of

0.05 (t value of 4.74) and create a visualization shown

in the top row of Fig. 5. Three different views are

displayed and significant regions are shown in red

and blue colors. Red/blue colors indicate where in-

ward/outward changes to the template are needed
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to match G/G MCI. The shape changes of the G/G

MCI group are most pronounced in the posterior part

of the right hippocampus. In this analysis, the align-

ment was done for hippocampal-pair complexes. The

bottom row of Fig. 5 shows a very similar result using

the BV scaling scheme.

Fig. 5. Regions of statistically significant structural changes
between HC and G/G MCI. These regions are created by
thresholding the t-map using the cutoff value 4.74, which cor-
responds to a corrected p value of 0.05 (i.e., at 95% confidence
level). Three different views are displayed. Red/blue colors
indicate where inward/outward changes to the template are
needed to match G/G MCI. The top and bottom rows show
the results using the IC and BV scaling schemes respectively.

In another experiment, we find that shape

changes are only detectable on right hippocampi for

MCI participants who were homozygous for the G al-

lele. We look at only the right hippocampi and align

them separately without considering their spatial re-

lation to the left hippocampi. We use IC scaling in

this analysis. Fig. 6 shows the resulting t-maps of

the analyses between HC and three MCI genotypes.

Fig. 6. The resulting t-maps of the analyses between HC
and three MCI genotypes. Statistically significant shape
changes could be identified only for MCI participants who are
homozygous for the G allele, i.e., C/C MCI (left) and G/G
MCI (right). All the t values in the C/G MCI analysis (mid-
dle) are well below the cutoff value 4.46

Fig. 7 shows the regions of statistically signifi-

cant structural changes: (top) between HC and C/C

MCI, and (bottom) between HC and G/G MCI,

where the t-maps are thresholded at the corrected p

value of 0.05 (t value of 4.52 for C/C MCI and 4.53

for G/G MCI). Three different views are displayed.

The shape changes of both groups are located in the

posterior part of the right hippocampus.

Fig. 7. Regions of statistically significant structural
changes: (top) between HC and G/G MCI, (bottom) between
HC and G/G MCI. These regions are created by thresholding
the t-map using the cutoff value 4.52 for C/C MCI and 4.53
for G/G MCI, which correspond to a corrected p value of 0.05
(i.e., at 95% confidence level). Three different views are dis-
played. The shape changes of both groups are located in the
posterior part of the right hippocampus.

Besides showing the t-maps and significant re-

gions, we can also use the t-statistics and the surface

deformation projection directions (in our case, the

FLD direction) to create a shape change direction

for each landmark and map it on to the template.

Fig. 8 shows a sample visualization. Such a visual-

ization can provide an intuitive, comprehensive and

useful way for better understanding the connection

between genotypes and imaging phenotypes.

HC versus MCI G/G

Fig. 8. Visualization of shape change directions between HC
and G/G MCI. The left plot shows the significant regions to-
gether with the shape change directions, while the right plot
shows the directions on the whole surface. The opposite di-
rection of each arrow suggests the deformation that is needed

to match G/G MCI shape.
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4. CONCLUSIONS

We have performed a mild cognitive impairment

(MCI) study to examine hippocampal shape changes

related to the IL-6 -174 SNP. In our analysis, we have

proposed a novel surface signal extraction method

and integrated it with a set of powerful surface

processing techniques, including spherical harmonic

surface modeling, quaternion-based 3D shape regis-

tration, and statistical inference on the surface using

heat kernel smoothing and random field theory.

One result shows that G/G MCIs are the most

abnormal in shape relative to controls, while G/C

and C/C genotype MCIs and CC group are unaf-

fected in terms of hippocampal shape. The shape

changes in the G/G MCI group are most pronounced

in the posterior part of the right hippocampus. An-

other result shows that shape changes are only identi-

fiable on right hippocampi for MCI participants who

were homozygous for the G allele; and these changes

are also located in the posterior part. These findings

suggest that brain imaging phenotypes, genetic pro-

files, and cognitive measures, in combination, have

the potential to elucidate the biological pathways

and circuits related to memory processes and thera-

peutic response in MCI and AD.

The shape changes derived from brain imaging

can also be served as useful endophenotypes14, which

are measurable intermediate traits that facilitate the

search for genotype-phenotype associations. Thus,

an interesting future topic could be to investigate a

systems biology approach for understanding the ge-

netic architecture of MCI and AD by examining more

neuroimaging endophenotypes related to candidate

pathways composed of ensembles of genomically dis-

tributed but functionally related genes.
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