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Abstract 
A computational framework is presented for 
morphometric analysis of 3D surfaces that aims to 
localize regionally specific shape changes between 
groups of 3D objects. This framework integrates a set 
of powerful surface modeling and processing 
techniques, including the spherical harmonics 
(SPHARM) description for surface modeling, a 
quaternion-based method for 3D shape registration, 
heat kernel smoothing for increasing surface signal-to-
noise ratio, and random fields theory for statistical 
inference on the surface. The effectiveness of this 
framework is demonstrated in a computational 
neuroscience application for identifying hippocampal 
shape changes in Mild Cognitive Impairment (MCI). 

Keywords: Shape analysis, surface modeling, heat 
kernel smoothing, Gaussian random fields. 

1. Introduction 
Statistical morphometric analysis is an important and 
challenging problem in computer vision and medical 
image analysis. In the brain imaging domain, the goal 
is to identify morphometric abnormalities in structures 
of interest that are associated with a particular 
condition to aid diagnosis and treatment. We present a 
computational technique for morphometric analysis of 
3D surfaces to localize regionally specific shape 
changes between groups of 3D objects, and 
demonstrate the technique in a computational 
neuroscience application: identifying hippocampal 
shape changes in Mild Cognitive Impairment (MCI). 

MCI [7] is characterized by memory complaints 
and impairment in the absence of dementia and 
confers a high risk for Alzheimer's disease (AD). 
Identifying hippocampal morphological abnormalities, 

in circuits required for learning and memory, may be 
critical for early diagnosis and treatment of MCI and 
AD. Volumetric analysis can identify hippocampal 
atrophy in MCI [7], but does not localize the structural 
changes. Shape analysis has the potential to provide 
important information above and beyond simple 
volume measurements and may localize regionally 
specific structural changes in the absence of volume 
differences. This study performs hippocampal shape 
analysis aiming at a global and local quantitative 
representation of shape changes in MCI. 

Two issues are involved in this type of analyses: 
(1) how to describe a 3D shape; and (2) how to 
perform statistical analysis based on the shape 
description. The spherical harmonics (SPHARM) 
technique [1] is a parametric surface description using 
spherical harmonics as basis functions. It is suitable 
for surface comparison [8] and can deal with 
arbitrarily shaped but simply connected objects. We 
employ the SPHARM description to model a 3D shape 
and then derive a dual landmark representation. 
Multiple correlated statistical tests can then be 
performed directly on each surface landmark but 
require a correction scheme. One scheme proposed by 
Styner and Gerig [10] is to decompose 3D surfaces 
into planar images and then use the SnPM package [6] 
to analyze them. 

To avoid using surface flattening that distorts the 
inherent surface geometry, we employ Chung's 
approach [2, 3, 4] to perform statistical inference 
directly on a surface manifold. Thus, our framework is 
an integration of the following powerful techniques: 
the SPHARM description for surface modeling, a 
quaternion-based method for 3D shape registration, 
heat kernel smoothing for increasing surface signal-to-
noise ratio, and random fields theory for statistical 
inference on the surface. 



 
Fig. 1: Landmark representation for hippocampal shapes: mesh vertices are landmarks. These surfaces are reconstructed 
using the SPHARM description and aligned using a quaternion-based registration algorithm. 

 
Fig. 2: Heat kernel smoothing: (left) the initial signal is mapped on to the surface; (right) the signal is smoothed using a heat 
kernel of FWHM = 8mm. Our scaling scheme forces the mean shape to have a total volume of 6780 mm3. 

2. Methods  
This section describes our data set as well as surface 
modeling and statistical analysis approaches. 

2.1. Hippocampal Data 
Participants are 40 adults with amnestic MCI (age 72.5 
± 3.3), 40 adults with cognitive complaints (CC) but 
no impairment (72.6 ± 2.6), and 42 normal controls 
(CN) (70.8 ± 2.6). MRI scan data were acquired on a 
1.5 Tesla GE scanner as a T1-weighted SPGR coronal 
series. The hippocampi were segmented using the 
BRAINS software [5]. A 3D binary image of isotropic 
voxels is reconstructed from each set of 2D 
hippocampal segmentation results. 

2.2. Surface Modeling 
The SPHARM description [1] is used for modeling all 
the hippocampal surfaces. The first step is to create a 
continuous and uniform mapping from the object 
surface to the surface of a unit sphere. This step is 
formulated as a constrained optimization problem with 
the goals of topology and area preservation and 
distortion minimization. The result is a bijective 
mapping between each point v on the surface and a 
pair of spherical coordinates θ  and φ: 
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complete set of spherical harmonic basis functions 
),( φθm

lY , where ),( φθm
lY  denotes the spherical 

harmonic of degree l and order m. The expansion takes 
the form: 

),(),(
0

φθφθ ∑ ∑
∞

= −=

=
l

l

lm

m
l

m
l Ycv , 

 
where Tm

lz
m
ly

m
lx

m
l cccc ),,(= . The coefficients m

lC  up to 
a user-desired degree can be estimated by solving a set 
of linear equations in a least squares fashion. The 
object surface can then be reconstructed using these 
coefficients, and using more coefficients leads to a 
more detailed reconstruction. 

The left and right hippocampi are treated as a 
single shape configuration, and so the spatial relation 
between them can be preserved. To create a shape 
descriptor for such a multiple-object configuration, we 
employ an approach proposed in [9] to remove the 
effects of scaling, rotation, and translation. First, the 
parameter space of each hippocampal surface is 
aligned according to the first order ellipsoid for 
establishing the correspondence across subjects. Next, 
after normalizing for the total volume, landmarks are 
created by a uniform sampling of two surfaces for 
each configuration. Finally, a quaternion-based 
algorithm is used to align these landmarks through the 
least square rotation and translation: subjects are first 



 
Fig. 3: t-map of the shape change for null data. The null 
data are created by randomly dividing all 122 subjects 
into two equal size groups. Clearly, our statistical 
analysis should not detect any morphological changes 
between these two groups. In fact, all the t values are 
well below the cutoff value 3.26. 
 

aligned to a certain control and then aligned to the 
mean shape iteratively until the mean converged. Now 
each hippocampal pair is described by a set of 
normalized landmarks and these landmark sets are 
comparable across subjects (See Fig. 1 for example). 

2.3. Statistical Analysis 
For each landmark, the local shape change is defined 
as the distance between an individual and the mean 
along the normal direction of the mean surface. In 
order to increase the signal-to-noise ratio (SNR), 
Gaussian kernel smoothing is desirable in many 
statistical analyses. Since the geometry of a 
hippocampal surface is non-Euclidean, we cannot 
directly apply Gaussian kernel smoothing. Instead, we 
employ heat kernel smoothing, which generalizes 
Gaussian kernel smoothing to arbitrary Riemannian 
manifolds [2, 3]. The heat kernel smoothing is 
implemented by constructing the kernel of a heat 
equation on manifolds that is isotropic in the local 
conformal coordinates. By smoothing the data on the 
hippocampal surface, the SNR will increase and it will 
be easier to localize the shape changes. Fig. 2 shows 
sample heat kernel smoothing result.  

To perform statistical inference directly on the 
surface, surface signals are modeled as Gaussian 
random fields. This theoretical model assumption has 
been checked using both Lilliefors test and quantile-
quantile plots for our data. Detecting the region of 
statistical significant shape changes can be done via 
thresholding the maximum of the t random field 
defined on the hippocampal surface. The p value of the 
local maxima of the t field will give a conservative 
threshold. See [2, 3] for more details on how to create 
a corrected p value map using a t value map and other 
related information. 

3. Results 
To show the effectiveness of the proposed framework, 
we conduct an experiment for null data. The null data 
are created by randomly dividing all 122 subjects into 
two equal size groups. Clearly, our statistical analysis 
should not detect any morphological changes between 
these two groups. In fact, in the resulting t value map, 
all the t values are well below the cutoff value 3.26, 
see Fig. 3. We have also performed an experiment on a 
synthetic data set with a known group difference. The 
experimental results show that our framework can 
correctly localized this group difference. 

We perform group analyses for CN versus CC, 
CC versus MCI, and CN versus MCI, using FWHM = 
8mm for heat kernel smoothing. Fig. 4 shows the 

resulting t-maps of these analyses. Positive/negative t-
values indicate that outward/inward directions change 
the mean to shapes of the first class. Statistically 
significant regions of shape changes only appear 
between CN and MCI. The CC group shows a more 
intermediate pattern. 

In order to identify regions of statistically 
significant structural changes between CN and MCI, 
we threshold the t-map at the corrected p value of 0.05 
(t value of 3.31) and create a visualization shown in 
Fig. 5. Three different views are displayed and 
significant regions are shown in red and blue colors. 
Red/blue colors indicate that outward/inward 
directions change the mean to CN. The structural 
changes in MCI are primarily located in the anterior 
right hippocampus and posterior left hippocampus. 

From these experiments, we observe that shape 
analysis has the potential to inform early detection and 
is likely to be useful for longitudinal monitoring of 
response to therapeutic agents. 

Data sets in the brain imaging domain are often 
relatively small due to the difficulty and expense of 
data collection. Thus, the computational cost of our 
framework is usually not a problem here, since all the 
steps except surface parameterization are very efficient 
for small sample set learning and surface 
parameterization is still feasible in our case; see [8] for 
more details about related time complexity analysis. 

4. Conclusions 
A computational framework is presented for 
morphometric analysis of 3D surfaces. This 
framework combines SPHARM surface modeling, 
quaternion-based registration, heat kernel smoothing, 
and random fields theory together for localizing 
regionally specific shape changes between groups of 
3D objects. Its effectiveness is demonstrated in a 



Fig. 4: t-maps of group analyses for CN versus CC (left), CC versus MCI (middle), and CN versus MCI (right), where 
FWHM = 8mm is used for heat kernel smoothing. Positive/negative t-values indicate that outward/inward directions change 
the mean to shapes of the first class. Regions of statistically significant shape changes only appear between CN and MCI. 

Fig. 5: Regions of statistically significant structural changes between CN and MCI. These regions are created by 
thresholding the t-map using the cutoff value 3.31, which corresponds to a corrected p value of 0.05 (i.e., at 95% confidence 
level). Three different views are displayed. Red/blue colors indicate that outward/inward directions change the mean to CN. 
The structural changes in MCI are primarily located in the anterior right hippocampus and posterior left hippocampus. 

computational neuroscience application for identifying 
hippocampal shape changes in MCI. This is a general 
framework and can be applied to other biomedical 
imaging problems where surface analysis of some type 
of structure is relevant. 
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