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Abstract

We present a unified computational approach to tensor-
based morphometry in detecting the brain surface shape
difference between two clinical groups based on magnetic
resonance images. Our approach is novel in a sense that
we combined surface modeling, surface data smoothing
and statistical analysis in a coherent unified mathemati-
cal framework. The cerebral cortex has the topology of a
2D highly convoluted sheet. Between two different clinical
groups, the local surface area and curvature of the cortex
may differ. It is highly likely that such surface shape differ-
ences are not uniform over the whole cortex. By comput-
ing how such surface metrics differ, the regions of the most
rapid structural differences can be localized. To increase
the signal to noise ratio, diffusion smoothing based on the
explicit estimation of Laplace-Beltrami operator has been
developed and applied to the surface metrics. As an illus-
tration, we demonstrate how this new tensor-based surface
morphometry can be applied in localizing the cortical re-
gions of the gray matter tissue growth and loss in the brain
images longitudinally collected in the group of children.

1. Introduction
The cerebral cortex has the topology of a 2-dimensional
convoluted sheet. Most of the features that distinguish these
cortical regions can only be measured relative to that local
orientation of the cortical surface [6]. It is likely that dif-
ferent clinical population will show different brain surface
shape differences [4, 5, 14, 24, 25]. By computing how sur-
face metrics such as the cortical thickness, curvature and lo-
cal surface area differ among different groups, brain shape
differences can be quantified locally.

The first obstacle in developing surface-based morphom-
etry is the automatic segmentation of the cortical surfaces
from magnetic resonance images (MRI). It requires first

correcting intensity nonuniformity or RF inhomogeneity ar-
tifacts. We have used nonparametric nonuniform intensity
normalization method (N3), which eliminates the depen-
dence of the field estimate on anatomy [18]. The next
step is the tissue classification into three types: gray mat-
ter, white matter and cerebrospinal fluid (CSF). An artifi-
cial neural network classifier [16, 26] or a mixture model
cluster analysis [8] can be used to segment the tissue types
automatically. After the tissue classification, the cortical
surface is usually generated as a smooth triangular mesh.
The most widely used method for triangulating the surface
is the marching cubes algorithm [13]. Level set method [19]
or deformable surfaces method [7] are also available. In
our study, we have used the anatomic segmentation using
proximities (ASP) method [14], which is a variant of the
deformable surfaces method, to generate cortical triangu-
lar meshes that has the topology of a sphere. Brain sub-
structures such as the brain stem and the cerebellum were
removed. Then an ellipsoidal mesh that already had the
topology of a sphere was deformed to fit the shape of the
cortex guaranteeing the same topology. The resulting trian-
gular mesh will consist of 40,962 vertices and 81,920 trian-
gles with the average internodal distance of 3 mm. Partial
voluming is a problem with the tissue classifier but topol-
ogy constraints used in ASP method were shown to provide
some correction by incorporating many neuroanatomical a
priori information [14]. The triangular meshes are not con-
strained to lie on voxel boundaries. Instead the triangular
meshes can cut through a voxel, which can be considered as
correcting where the true boundary ought to be. Once we
have a triangular mesh as the realization of the cortical sur-
face, we can model how the cortical surface deforms over
time.

In modeling the surface deformation, that is required in
comparing two different brain images, a proper mathemati-
cal framework might be found in both differential geometry
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and fluid dynamics. The concept of the evolution of phase-
boundary, which describes the geometric properties of the
evolution of boundary layer between two different materials
due to internal growth or external force, can be used to de-
rive the mathematical formulation on the surface deforma-
tion [4]. It is natural to assume the cortical surfaces to be a
smooth 2-dimensional Riemannian manifold parameterized
by two parameters [6, 7]. Surface parameterization of the
cortical surface has been done previously by [10]. From the
surface parameterization, Gaussian and mean curvatures of
the brain surface can be computed and used to characterize
its shape [6, 9, 10]. In particular, [10] used the quadratic
surface in estimating the Gaussian and mean curvature of
the cortical surfaces. Surface parameterization enables us
to compute surface metrics such as local area dilatation and
curvature differences that characterize the surface shapes.

Due to errors in image intensities, surface extraction and
surface fitting, surface-based signal smoothing is required
to increase the signal-to-noise ratio. We have used dif-
fusion smoothing or the Laplace-Beltrami flow to smooth
surface metrics. Although diffusion smoothing has been
used widely in image analysis [15, 17, 20, 22, 23], there
is only two papers so far that use the Laplace-Beltrami flow
to smooth out brain surface data [1, 5]. Based on the finite
element method (FEM), we explicitly estimate the Laplace-
Beltrami operator and then the finite difference scheme is
used to iteratively solve a diffusion equation on the sur-
face. Because the Laplace-Beltrami operator is estimated
as a linear weight of the neighboring function values, once
the linear weights are computed at the beginning, it will be
repeatedly used in the subsequent iterations; hence, avoid-
ing sparse matrix inversions which are required in most
FEM formulation. For surface-based statistical inference,
the smoothing filter size has been incorporated into the P -
value computation based on random fields theory [27].

As an illustration of our unified approach to tensor-based
surface morphometry, we will demonstrate how the surface-
based statistical analysis can be applied in localizing the
cortical regions of tissue growth and loss in brain images
longitudinally collected in a group of children and adoles-
cents.

2 Surface Medeling

Let Ui(x) = (U i
1, U

i
2, U

i
3)

t be the 3D displacement vector
required to deform the structure at x = (x1, x2, x3) in the
gray matter of the template brain Ωatlas to the homologous
structure in subject image Ωi. We assume that the whole
gray matter volume in Ωatlas will deform continuously and
smoothly to Ωi via the deformation x → x + Ui while the
cortical boundary ∂Ωatlas will deform to ∂Ωi. The cortical
surface ∂Ωi may be considered as consisting of two parts:
the outer cortical surface ∂Ωi

out between the gray matter

Figure 1: Individual gyral patterns mapped onto the tem-
plate surface ∂Ωatlas. The gyri of the subject match the
gyri of the template illustrating a close homology between
the surface of an individual subject and the template sur-
face. The Gyri are extracted by thresholding the thin-plate
spline energy functional on the inner surface. If there is no
homology between the corresponding vertices, we would
have complete misalignment.

and CSF and the inner cortical surface ∂Ωi
in between the

gray and white matter, i.e.

∂Ωi = ∂Ωi
out ∪ ∂Ωi

in.

We propose the following stochastic model on the displace-
ment Ui:

Ui(x) = µ(x) + Σ1/2(x)ε(x), x ∈ ∂Ωatlas, (1)

where µ is the mean displacement and Σ1/2 is the covari-
ance matrix, which allows for correlations between com-
ponents of the displacement fields. The components of the
error vector ε are are assumed to be independent and iden-
tically distributed as smooth stationary Gaussian random
fields with zero mean and unit variance.

Estimating the surface displacement fields Uij : ∂Ωi →
∂Ωj between two images i and j, and the surface extraction
can be performed at the same time. This method works best
in the case of matching two images of a single subject taken
at different times. First, an ellipsoidal mesh placed outside
the brain was shrunk down to the surface ∂Ωi

in. The ver-
tices of the resulting inner mesh are indexed and the ASP
algorithm will deform the inner mesh to fit the outer surface
∂Ωi

out by minimizing a cost function that involves bending,
stretch and other topological constrains [14]. The vertices
indexed identically on both meshes will lie within a very
close proximity and these define the automatic linkage in
the ASP algorithm. To generate the outer surface ∂Ωj

out,
we start with the inner surface ∂Ωi

in, and then deform it to
match the outer surface ∂Ωj

out by minimizing the same cost
function. Starting with the same mesh in two outer surface
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extractions, each point on ∂Ωi
in gets mapped to correspond-

ing points on ∂Ωi
out and ∂Ωj

out giving us the outer surface
deformation Uij : ∂Ωi

out → ∂Ωj
out. We do not use inner

surface deformation in our study although estimating inner
surface deformation can be done similarly. This method as-
sumes that the shape of the cortical surface does not appre-
ciably change between images Ωi and Ωj . This assumption
is valid in the case of brain development for a short period of
time, where it can be shown that the within-subject defor-
mation field is substantially smaller than between-subject
deformation.

Constructing surface template ∂Ωatlas, where statistical
parametric maps (SPM) of surface metrics will be formed,
is done by averaging the coordinates of corresponding ver-
tices that have the same indices. This surface atlas con-
struction method has been first introduced by [14], where
it is used to create the cortical thickness map for 150 nor-
mal subjects. The geometrical constraints such as stretch
and bending terms in ASP algorithm enforces a relatively
consistent correspondence on the cortical surface. Figure 1
shows the mapping of gyral pattern (red and yellow lines)
of a single subject onto the atlas surface. The gyri of the
subject matches the gyri of the atlas. Note the full anatom-
ical details still presented in ∂Ωatlas even after the vertex
averaging. Major sulci such as the central sulcus and supe-
rior temporal sulcus are clearly identifiable. If there is no
homology between corresponding vertices, one would only
expect to see featureless dispersion of points.

Once we have extracted triangular surface meshes and
established mapping from a vertex in ∂Ωi to a correspond-
ing vertex in ∂Ωj , the next step is modeling and computing
the metric tensor differences between two surfaces. In or-
der to compute metric tensors, surface parameterization is
needed. We model the cortical surface as a smooth 2D Rie-
mannian manifold parameterized by two parameters u1 and
u2 such that any point x ∈ ∂Ωi can be uniquely represented
as x = X(u) for some parameter space u = (u1, u2) ∈
D ⊂ �

2 . A quadratic polynomial

z = β1u
1 + β2u

2 + β3(u1)2 + β4u
1u2 + β5(u2)2 (2)

was used as a local parameterization fitted via the least-
squares estimation on the tangent plane. Using the least-
squares method, these coefficients βi can be estimated.
Slightly different quadratic surface parameterizations are
used in estimating curvatures of a macaque monkey brain
surface [10] [11]. Once βi are estimated,

X(u1, u2) =
(
u1, u2, z(u1, u2)

)t
(3)

becomes a local surface parameterizations of choice. Even
thought metric tensors depend on the choice of parameteri-
zation, local surface area and curvature dilatation, which are
introduced in the next section, are independent of parame-
terization.

3. Metric Tensor Computation
We introduce the concepts of surface area and curvature di-
latation, which can be used in quantifying surface shape dif-
ferences. Suppose that x = X(u) is the parameterization of
surface ∂Ω. Let Xi = ∂X/∂ui. From (3), Xi are given in
terms of coefficients βi and the Riemannian metric tensor
gij is given by the inner product between two vectors Xi

and Xj , i.e. gij = 〈Xi,Xj〉. The Riemannian metric ten-
sor gij measures the amount of the deviation of the cortical
surface from a flat Euclidean plane. The Riemannian met-
ric tensor enables us to quantify lengths, angles and areas in
the cortical surface. Let g = (gij) be a 2 × 2 metric tensor
matrix. Then the total surface area of the cortex ∂Ω is given
by

‖∂Ω‖ =
∫

D

√
det g du,

where D = X−1(∂Ω) is the parameter space [12]. The
integrand

√
det g is called the infinitesimal surface area el-

ement and it measures the area of the unit square in the pa-
rameter space D, that has been transformed via X : D →
∂Ω. The infinitesimal surface area element is a generaliza-
tion of Jacobian. The local surface area dilatation Λarea

from ∂Ωi to ∂Ωj , whose metric tensor matrices are given
by gi and gj , is then defined as

Λarea =

√
det gj −

√
det gi√

det gi
, (4)

which measures percentage local area differences. The di-
latation is invariant under parameterization, i.e. the area
dilatation is the same no matter which parameterization is
chosen.

Instead of using metric tensors gij , it is possible to for-
mulate local surface area change in terms of the areas of the
corresponding triangles. However, this formulation assign
surface area change values to each face instead of each ver-
tex and this causes problems in both surface-based smooth-
ing and statistical analysis, where values are defined on ver-
tices. Defining scalar values on vertices from face values
can be done by the weighted average of face values, which
should converge to (4). It is not hard to develop surface-
based smoothing and statistical analysis on values defined
on faces but traditionally surface metrics are computed on
vertices.

Curvatures of the surface can be also used to quantify
the surface shape difference. The principal curvatures can
characterize the shape and location of the sulci and gyri,
which are the valleys and crests of the cortical surfaces
[2, 10, 11, 21]. By measuring the curvature changes, rapidly
folding and cortical regions can be localized. Let κ1 and κ2

be the two principal curvatures as defined in [12]. The prin-
cipal curvatures can be represented as functions of βis in
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Figure 2: Top: The thin-plate spline energy functional com-
puted on the inner surface of a 14 year old subject. It mea-
sures the amount of folding in the cortical surface. Bottom:
t statistical map showing statistically significant region of
curvature increase (t > 5.1) over time between ages 12 and
16. Most of curvature increase occurs on gyri while there is
no significant change of curvature on most of sulci.

quadratic surface (2) [12]. To measure the amount of fold-
ing, we define curvature metric K as a function of the prin-
cipal curvatures: K = (κ2

1 +κ2
2)/2+α. We may arbitrarily

set α = 0.001. α is added to make sure that the curva-
ture dilatation is well defined. The mean of the square of
the principal curvatures is usually refereed as the thin-plate
spline energy functional. If the cortical surface is flat, cur-
vature metric K obtains the minimum 0.001. The larger the
curvature metric, the more surface will be crested as shown
in Figure 2. The local curvature dilatation rate Λcurvature

is similarly defined as (4).

4. Diffusion Smoothing
In order to increase the signal-to-noise ratio (SNR) and
to satisfy Gaussian random field assumptions that is re-
quired in our statistical analysis [27], surface-based sig-
nal smoothing or filtering is needed. One important reason
that the Gaussian kernel smoothing is widely used in brain
imaging analysis is that it preserves the Gaussian noise as-
sumption even after the filtering. So if we are assuming
a linear model with a Gaussian error, the Gaussian kernel
smoothed image will still follow the same linear model but
with a more smooth and isotropic covariance structure. By
smoothing the data on the cortical surface, the SNR will

increase and in turn it will be easier to localize the morpho-
logical changes. However, due to the convoluted nature of
the cortex whose geometry is non-Euclidean, it is not possi-
ble to apply Gaussian kernel smoothing on the cortical sur-
face directly. Gaussian kernel smoothing of functional data
f(x),x = (x1, . . . , xn) ∈ �

n with FWHM (full width at
half maximum) = 4(ln 2)1/2

√
t is defined as the convolu-

tion of the Gaussian kernel with f :

F (x, t) =
1

(4πt)n/2

∫
�n

e−(x−y)2/4tf(y) dy. (5)

Since formulation (5) can not be directly applied to the
cortical surfaces, we reformulate it as a solution of a dif-
fusion equation on a Riemannian manifold. This general-
ization is called diffusion smoothing and has been used in
the analysis of fMRI data on the cortical surface [1]. In
many computer vision areas, it is usually refereed as sim-
ply diffusion or Beltrami flow [15, 20]. It can be shown that
(5) is the integral solution of an isotropic diffusion equa-
tion ∂tF = ∆F with the initial condition F (x, 0) = f(x),
where ∆ is the n-dimensional Euclidean Laplacian. Gener-
alizing the Euclidean Laplacian to an arbitrary Riemannian
manifold, we get the Laplace-Beltrami operator [12]. The
approach taken in [1] is based on a local flattening of the
cortical surface and estimating the planar Laplacian, which
may not be as accurate as our estimation based on the finite
element method (FEM). Further, our explicit FEM approach
completely avoid any local or global surface flattening. For
given Riemannian metric tensor gij , the Laplace-Beltrami
operator ∆ is given as

∆F =
∑
i,j

1
|g|1/2

∂

∂ui

(
|g|1/2gij ∂F

∂uj

)
, (6)

where (gij) = g−1 [12]. Using the FEM on the triangular
cortical mesh generated by the ASP algorithm, it is possi-
ble to estimate the Laplace-Beltrami operator as the linear
weights of neighboring vertices [4].

Let p1, · · · ,pm be m neighboring vertices around the
central vertex p = p0. Then the explicit linear estimation
of the Laplace-Beltrami operator based on FEM is given by

∆̂F (p) =
m∑

i=1

wi

(
F (pi) − F (p)

)

with the weights

wi = [cot θi + cotφi]/
m∑

i=1

‖Ti‖,

where θi and φi are the two angles opposite to the edge
connecting pi and p, and ‖Ti‖ is the area of the i-th trian-
gle (Figure 3). This is an improved formulation from the
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Figure 3: A typical triangulation in the neighborhood of
p = p0. When ASP algorithm is used, the triangular mesh
is constructed in such a way that it is always pentagonal or
hexagonal.

previous study [1] that uses diffusion smoothing on the cor-
tical surface, where the Laplacian is simply estimated as the
planar Laplacian after locally flattening the triangular mesh
consisting of nodes p0, · · · ,pm onto a flat plane. In the
numerical implementation, we have used formula

2 cot θi = 〈pi+1 − p,pi+1 − pi〉/‖Ti‖,

2 cotφi = 〈pi−1 − p,pi−1 − pi〉/‖Ti‖

and ‖Ti‖ = ‖(pi+1 − p) × (pi − p)‖/2. Afterwards, the
finite difference scheme is used to iteratively solve the dif-
fusion equation at each vertex p:

F (p, tn+1) = F (p, tn) + (tn+1 − tn)∆̂F (p, tn),

with the initial condition F (p, t0) = f(p). N -iterations
are equivalent to the diffusion of the initial data f for du-
ration Nδt. If the diffusion were applied to Euclidean
space, it would be equivalent to Gaussian kernel smooth-
ing with FWHM = 4(ln 2)1/2

√
Nδt. The iteration step

size δt is chosen to satisfy δt ≤ min(A, B)/∆̂F (p, tn)
for all n, where A = |maxi F (pi, tn) − F (p, tn)| and
B = |mini F (pi, tn) − F (p, tn)|, to guarantee the con-
vergence. Computing the linear weights for the Laplace-
Beltrami operator takes a fair amount of time (four minutes
in MATLAB running on a Pentium III machine), but once the
weights are computed, it is applied through the whole itera-
tion repeatedly and the actual finite difference scheme takes
only two minutes for 100 iterations. Figure 4 illustrates the
process of diffusion smoothing on the surface of the sub-
structure of the brain (brain stem).

Figure 4: Diffusion smoothing simulation on a triangular
mesh consisting of 1280 triangles. This smaller mesh is the
surface of the brain stem. The artificial signal was generated
with Gaussian noise to illustrate the smoothing process. (a)
The initial signal. (b) After 10 iterations with δt = 0.5. (c)
After 20 iterations with δt = 0.5.

5. Brain Surface Data Analysis
Under the assumption of stochastic model (1), it can be
shown that the area dilatation is approximately distributed
as Gaussian:

Λ(x) = λ(x) + ε(x), (7)

where λ = tr [g−1(∇X)t(∇µ)∇X ] is the mean area di-
latation and error ε is a mean zero Gaussian random field
defined on the cortical surface. The curvature dilatation
can be modeled similarly. These theoretical model assump-
tions have been verified using Lilliefors test at 0.05 level
[5]. From statistical model (7), we are interested in testing
the hypothesis: H0 : λ(x) = 0 for all x ∈ ∂Ωatlas, v.s.
H1 : λ(x) �= 0 for some x ∈ ∂Ωatlas. The maximum of
T random field will be used as a test statistic [27]. The T
random field on manifold ∂Ωatlas is defined as

T (x) =
M(x)

S(x)/
√

n
, x ∈ ∂Ωatlas

where M and S are the sample mean and standard deviation
of metric Λ. T (x) is distributed as a student’s t with n − 1
degrees of freedom at each voxel x. The P -value can be
approximated asymptotically [27]. For high threshold y, it
can be shown that

P
(

max
x∈∂Ωatlas

T (x) ≥ y
)
≈

3∑
i=0

φi(∂Ωatlas)ρi(y), (8)

where ρi is the i-dimensional EC-density and the
Minkowski functional φi for ∂Ωatlas are

φ0 = 2, φ1 = 0, φ2 = ‖∂Ωatlas‖, φ3 = 0

and ‖∂Ωatlas‖ is the total surface area of ∂Ωatlas [27].
When diffusion smoothing with given FWHM is applied
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to metric Λ on surface ∂Ωatlas, the 0-dimensional and 2-
dimensional EC-density becomes

ρ0(y) =
∫ ∞

y

Γ(n
2 )

((n − 1)π)1/2Γ(n−1
2 )

(
1 +

y2

n − 1

)−n/2

dy,

ρ2(y) =
1

FWHM2

4 ln 2
(2π)3/2

Γ(n
2 )y

(
1 + y2

n−1

)−(n−2)/2

(n−1
2 )1/2Γ(n−1

2 )
.

Therefore, the P -value can be approximated by

P
(

max
x∈∂Ωatlas

T (x) ≥ y
)
≈ 2ρ0(y) + ‖∂Ωatlas‖ρ2(y).

For one-sided α-level test, we numerically solve equation
2ρ0(y) + ‖∂Ωatlas‖ρ2(y) = α and reject H0 if T ≥ y or
T ≤ −y.

6. Applications
Two T1-weighted MR scans were acquired for 28 normal
subject at different times on the GE Sigma 1.5-T supercon-
ducting magnet system. The first scan was obtained at the
age t1 = 11.5 ± 3.1 years and the second scan was ob-
tained at the age t2 = 16.1 ± 3.2 years. We are interested
in detecting the regions of the cortical shape difference over
time. We compute the total surface area ‖∂Ωatlas‖ by sum-
ming the area of each triangle in a triangulated surface. The
total surface area of the average atlas brain is 275,800 mm2,
which is roughly the area of 53 × 53 cm2 sheet. We also
computed the local area and the curvature dilatations. Sur-
face metrics are then filtered with 20 mm FWHM diffusion
smoothing. At α = 0.025% level, statistically significant
regions of local area and curvature difference over time are
detected. Figure 2 shows the superior frontal and middle
frontal gyri curvature increase over time. Figure 5 shows lo-
cal surface expansion in Broca’s area in the left hemisphere
and local surface shrinkage in the left superior frontal sul-
cus. Most of surface reduction are concentrated near the
frontal region. It is interesting to note that between these
two gyri we have detected local surface area decrease. It
might be possible that local surface area shrinking in the
superior frontal sulcus causes the bending in the neighbor-
ing middle and superior frontal gyri. While the gray matter
is shrinking in both total surface area and volume, the cor-
tex itself seems to get folded to give increasing curvature in
brain development for children.

To verify that our modeling and analysis do not detect
any false signal, our methods have been checked on null
data. The null data is created by reversing time for ran-
domly chosen half of the subjects. In the null data, the
mean time difference t2 − t1 is −0.24 year so the statis-
tical analysis presented here should not detect any morpho-
logical changes. In fact, we did not detect any statistically
significant morphological changes.

Figure 5: t-map of the cortical surface area dilatation show-
ing the statistically significant region of area expansion and
reduction over time. The red regions are statistically sig-
nificant surface area expansions while the blue regions are
statistically significant surface area reductions between ages
12 and 16.

7. Conclusions

The unified tensor-based surface morphometry presented
here can localize the regions of surface shape difference be-
tween two clinical groups of magnetic resonance images at
a local level without specifying the regions of interest or
landmarks. The approach avoids artificial surface flatten-
ing, which may destroy the inherent geometrical structure
of the cortical surface. Our metric tensor formulation gives
us an added advantage that not only it can be used to mea-
sure local surface area and curvature change of the cortex
but also it is used for generalizing Gaussian kernel smooth-
ing on the cortex via diffusion smoothing. Since it is a di-
rect generalization of Gaussian kernel smoothing, the dif-
fusion smoothing should locally inherit many mathematical
and statistical properties of Gaussian kernel smoothing ap-
plied to standard 3D whole brain volume. The novelty of
our diffusion smoothing is that we used the explicit esti-
mation of the Laplace-Beltrami operator. We succeeded in
combining and unify surface modeling, morphometry, im-
age smoothing and statistical inference in the same mathe-
matical framework.
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