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Abstract— We present a novel parametric encoding scheme
for efficiently recording white matter fiber bundle informat ion
obtained from diffusion tensor imaging. The coordinates offiber
tracts are parameterized using a cosine series expansion. For an
arbitrary tract, a 19 degree expansion is found to be sufficient
to reconstruct the tract with an average error of about 0.26
mm. Then each tract is fully parameterized with 60 parameters,
which results in a substantial data reduction. Unlike traditional
splines, the proposed method does not have internal knots and
explicitly represents the tract as a linear combination of basis
functions. This simplicity in the representation enables us to
design statistical models, register tracts and perform subsequent
analysis in a more streamlined mathematical framework. As an
illustration, we apply the proposed method in characterizing
abnormal tracts that pass through the splenium of the corpus
callosum in autistic subjects.

I. I NTRODUCTION

Diffusion tensor imaging (DTI) can be used to characterize
the microstructure of biological tissues using measures of
the magnitude, anisotropy and aniotropic orientation [2].It
is assumed that the direction of greatest diffusivity is most
likely aligned to the local orientation of the white matter
fibers. White matter tractography offers the unique opportu-
nity to map out, segment and characterize the trajectories
of white matter fiber bundles noninvasively in the brain.
Most deterministic tractography algorithms use the local
diffusion tensor orientation to estimate the local direction of
propagation along the reconstructed pathway or fiber tract
[3] [8] [13] [15]. Tractography has been used to visualize
and map out major white matter pathways in individuals and
brain atlases [6] [16] [23] [24], segment specific white matter
areas for region of interest analyses [12], quantify white
matter morphometry and connections [19] [22], and visualize
the relationships between brain pathology and white matter
anatomy for clinical applications like neurosurgical planning
[1] [17] [18]. However, tractography data can be challenging
to interpret and quantify. Whole brain tractography studies
often generate many hundreds of thousand tracts. Recent
efforts have attempted to cluster [20] and automatically
segment white matter tracts [21] as well as characterize
tract shape parameters [4]. Many of these techniques can be
quite computationally demanding. Clearly efficient methods
for representing tract shape, regional tract segmentationand
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clustering, tract registration and quantification would beof
tremendous value to researchers.

In this paper, we present a novel approach for parameteriz-
ing tract shapes using Fourier descriptors. Fourier descriptors
have been previously used to classify tracts [4]. The Fourier
coefficients are computed by the Fourier transform that
involves the both sine and cosine series expansion. Then the
sum of the squared coefficients are obtained up to degree 30
for each tract and the k-means clustering is used to classify
the fibers globally. Our approach differs from [4] in that we
obtain local shape information employing cosine series only,
a special case of Fourier series. Using the new representation,
we demonstrate how to quantify abnormal pattern of white
matter fibers passing through the splenium of the corpus
callosum for autistic subjects.

II. COSINE REPRESENTATION

We are interested in encoding a tractM consisting ofn
noisy control pointsp1, · · · , pn. Consider a mappingζ−1

that maps the control pointpj onto the unit interval[0, 1] as

ζ−1 : pj →

∑j

i=1 ‖pi − pi−1‖
∑n

i=1 ‖pi − pi−1‖
= tj. (1)

This is the ratio of the arc-length from the pointp1 to pj, to
p1 to pn. We let this ratio to betj. We assumeζ−1(p1) = 0.
Then we parameterize the smooth inverse map

ζ : [0, 1] → M

using the cosine basis functions:

ψ0(t) = 1,ψl(t) =
√
2 cos(lπt).

The representation is first introduced in [7]. The constant√
2 is introduced to make the eigenfunctions orthonormal in

[0, 1] so that
∫1

0

ψl(t)ψm(t) dt = δlm, (2)

the Dirac-delta function. If we denote the coordinates ofζ

as (ζ1, ζ2, ζ3), the k-th degreecosine series representation
is given by

ζo(t) =

k∑

l=0

cloψl(t). (3)

The Fourier coefficientsclo are estimated by solving the
system of equations obtained at then control points:

ζo(tj) =

k∑

l=0

cloψl(tj). (4)
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Fig. 1. Cosine representation of a tract at various degrees.Red dots are control points. The degree 1 representation is astraight line that fits all the control
points in a least squares fashion. The error plot displays the average reconstruction error in millimeter (vertical) vs. degree (horizontal).

In the matrix notation, we write (4) as

Yn×3 = Ψn×kCk×3

whereY = (ζo(tj)), Ψ = (ψl(tj)) andC = (clo). Then the
least squares estimation ofC is given by

C = (Ψ ′Ψ)−1Ψ ′Y.

The proposed least squares estimation technique avoids
using the Fourier transform (FT) [4] [5] [9]. The drawback
of the FT is the need for a predefined regular grid system
so some sort of interpolation is needed. After various ex-
periments to obtain the optimal degree, we decided to use
k = 19 through out the paper (Figure 1). This gives the
average error of 0.26mm along the tract. The plot of the
average reconstruction error for other degrees is given in
Figure 1.

The advantage of the cosine representation is that, instead
of recording the coordinates of all control points, we only
need to record3 · (k + 1) number of parameters for all
possible tract shape. This is a substantial data reduction
considering that the average number of control points is 105
(315 parameters). We recommend readers to usek ≤ 30

degrees for most applications.

III. A PPLICATION TO AUTISM STUDY

A. Image Acquisition and Preprocessing

DTI data were acquired on a Siemens Trio 3.0 Tesla
Scanner with an 8-channel, receive-only head coil. Diffusion-
weighted images were acquired in 12 non-collinear diffusion
encoding directions with diffusion weighting factor 1000
s/mm2 in addition to a single reference image. Data acquisi-
tion parameters included the following: contiguous (no-gap)
fifty 2.5mm thick axial slices with an acquisition matrix of
128x128 over a FOV of 256mm, 4 averages, repetition time
(TR) = 7000 ms, and echo time (TE) = 84 ms.

Eddy current related distortion and head motion of each
data set were corrected using AIR and distortions from
field inhomogeneities were corrected using custom software
algorithms based on [11]. Distortion-corrected DW images
were interpolated to2× 2× 2mm voxels and the six tensor
elements were calculated using a multivariate log-linear
regression method [2].

The images were isotropically resampled at 1mm3 reso-
lution before applying the white matter tractography algo-
rithm. The second order Runge-Kutta streamline algorithm
with tensor deflection [13] was used. The trajectories were
initiated at the center of the seed voxels and were terminated
if they either reached regions with the factional anisotropy
(FA) value smaller then 0.15 or if the angle between two
consecutive steps along the trajectory was larger thanπ/4.
Each tract consists of 105± 54 control points. The distance
between control points is 1mm. Whole brain tracts are stored
as a file of size approximately 600MB. Whole brain white
matter tracts for 74 subjects are further aligned using the
affine registration [10] of FA-maps to the average FA-map .

B. Autism Population Study

The representation provides 60 dimensional feature vectors
(coefficients) for characterizing a single tract. We have inves-
tigated the utility of the proposed representation in the ability
to discriminate the different clinical populations (42 autistic
and 32 control subjects). We have focused our detailed
anatomical study on the splenium of the corpus callosum,
which is manually masked by J.E. Lee [14]. Then the tracts
passing through a ball of radius 5mm at the spleninum are
identified. Each subject have 1943± 1148 number of tracts
passing through the ball. The within-subject tract averaging
can be easily done within our representations by summing
the coefficients of the same degree [7] (Figure 2). First two
images in Figure 3 shows the 74 average within-subject tracts
color coded according to autism (red) and controls (blue).
The control subjects seem to show more clustering of fibers
compared to autistic subjects. So we have tested the statistical
significance of the clustering.

Given two tracts

ζo =

k∑

l=0

cloψl andηo =

k∑

l=0

cloψl,

the L2-distance between the two tracts is defined as

ρ(ζ, η)(t) =

[

3∑

o=1

(

k∑

l=0

(clo − dlo)ψl(t)
)2

]1/2

.

The metric ρ computes the Euclidean distance between
corresponding points along the two tracts at eacht. Given



Fig. 2. The within-subject average tract (red) of 2149 fibers. 2149 fiber
tracts are subsampled to show few selective tracts (blue). The average
tract is obtained by averaging the Fourier coefficients of 2149 cosine
representations.

a fiber consisting of n tractsη1, · · · , ηn within a subject,
the average tract̄η is obtained by averaging the coefficients
within the corresponding basis. Then we define the tract
concentration mapC as

C(η1, · · · , ηn) =

n∑

i=1

1

ρ(ηi, η̄)
.

The value ofC increases as tracts get more clustered. The
concentration mapC is a function of the parametert and can
be projected along the average tractη̄. We can compute the
average of the 74 average tracts by averaging the coefficients
of the average tracts. We have constructed the two sample
t-statistic (control - autism) using 74C-values and projected
the statistic on the population average tract in the third
image in Figure 3. We have detected the higher concentration
of fibers in control subjects in the left hemisphere (t-stat
1.79,p-value 0.078). Autistic subjects show abnormal brain
lateralization effect in fibers passing through the splenium.

IV. D ISCUSSION

Although the cosine representation is efficient for normal-
izing and averaging tracts, unfortunately it is not translation,
rotation and scale invariant. This might be a reason why the
resulting signal is a bit weak (p-value< 0.078). One simple
way of obtaining translation, rotation and scale invariant
representation is to project white matter fiber tracts onto a
unit sphere. Consider directional vectorsvi = pi − pi−1

with the conventionv1 = p1. The vectorsvi contain all the
necessary information to reconstruct the original tract.

The advantage of using the spherical projection method
is that it offers a translation, rotation and scale invariant
tract representation. Two tracts with the identical shape but
at different positions will be identically represented as the
same spherical curve. The translation information is stored
in v1 value, which should be stored separately.

Sincevi are unit vectors (exceptv1) in our tractography
algorithm [13], they are all inS2. For a general case, which
will likely happen for other tractography algorithms, we
projectvi onto S2 via the spherical projectionP:

P : vi → wi =
vi

‖vi‖
.

Fig. 3. Each streamtube is the average of tracts passing through a ball
of 5mm radius around the splenium in a subject. White matter fibers in
controls (blue) are more clustered together with smaller spreading compared
to autism (red). Thick streamtube at the bottom right image is the population
average tract of all 74 subjects. Based on the fiber concentration map, we
constructedt-statistic and the correspondingp-value.

wj defines control points for a spherical curve. The spherical
curves can be parameterized using the cosine representation

ζo(tj) =

k∑

l=0

cloψl(tj). (5)

However, directly solving for each coordinateζo will
violate the quadratic constraint that the spherical curve has
to be embedded onS2, i.e.

3∑

o=1

[

k∑

l=0

cloψl(tj)
]2

= 1. (6)

This is easily seen from Figure 4, in which the degree 10
representation is visibly not embedded inS2. The average
absolute error for reconstruction is relatively large for low
degree due to the fact that the representation is no longer
embedded inS2. Note that at degree 30, the average abso-
lute error is small enough, i.e. 0.0153mm, to be used for
subsequent modeling.

The spherical projection based representation can not be
obtained in a straightforward fashion and requires solving
three least squares problem simultaneously with the quadratic
constraint (6) that relates the three equations (5). We willnot
consider this issue in this paper and leave it for a future study.

Another possible reason for the weak signal might be the
improper choice of the fiber concentration mapC. Although
C increases as tracts get more clustered, it may not be a
proper metric for separating the groups. Possibly a better
metric would be to use the inverse of the sample variance,
i.e.

C(η1, · · · , ηn) =
n − 1

∑n

i=1 ρ
2(ηi, η̄)2

.



Fig. 4. Left: a single white matter fiber tract passing through the splenium of the corpus callosum. Middle: the cosine representation of the spherical
projection of tracts at degree 10 and 30. The error plot displays the average reconstruction error in millimeter (vertical) vs. degree (horizontal) in the
spherical projection method.

This new metric is normalized by the total number of
tracts accounting for variable number of tracts for different
subjects.
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