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Efficient Parametric Encoding Scheme for White Matter Fiber Bundles
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Abstract— We present a novel parametric encoding scheme clustering, tract registration and quantification would die

for efficiently recording white matter fiber bundle informat ion

obtained from diffusion tensor imaging. The coordinates ofiber

tracts are parameterized using a cosine series expansionofFan

arbitrary tract, a 19 degree expansion is found to be sufficiet

to reconstruct the tract with an average error of about 0.26
mm. Then each tract is fully parameterized with 60 parametes,

which results in a substantial data reduction. Unlike traditional

splines, the proposed method does not have internal knots én
explicitly represents the tract as a linear combination of lasis
functions. This simplicity in the representation enables 8 to

design statistical models, register tracts and perform suequent
analysis in a more streamlined mathematical framework. As a

illustration, we apply the proposed method in characterizhg

abnormal tracts that pass through the splenium of the corpus
callosum in autistic subjects.

I. INTRODUCTION

tremendous value to researchers.

In this paper, we present a hovel approach for parameteriz-
ing tract shapes using Fourier descriptors. Fourier detecs
have been previously used to classify tracts [4]. The Fourie
coefficients are computed by the Fourier transform that
involves the both sine and cosine series expansion. Then the
sum of the squared coefficients are obtained up to degree 30
for each tract and the k-means clustering is used to classify
the fibers globally. Our approach differs from [4] in that we
obtain local shape information employing cosine seriey,onl
a special case of Fourier series. Using the new represemtati
we demonstrate how to quantify abnormal pattern of white
matter fibers passing through the splenium of the corpus
callosum for autistic subjects.

Il. COSINEREPRESENTATION

Diffusion tensor imaging (DTI) can be used to characterize
the microstructure of biological tissues using measures of We are interested in encoding a traet consisting ofn
the magnitude, anisotropy and aniotropic orientation [2]. noisy control pointspy,---,p,. Consider a mapping '
is assumed that the direction of greatest diffusivity is moghat maps the control point; onto the unit interval0, 1] as
likely aligned to the local orientation of the white matter j
fibers. White matter tractography offers the unique opportu Z;ﬂ lpi —pial] =t;. (1)
nity to map out, segment and characterize the trajectories i P —pia

of white matter fiber bundles noninvasively in the brainThis is the ratio of the arc-length from the point to p;, to

Most deterministic tractography algorithms use the Iocag] to p. We let this ratio to be;. We assumé ' (py) = 0.
diffusion tensor orientation to estimate the local directof Then we parameterize the smooth inverse map

propagation along the reconstructed pathway or fiber tract

[3] [8] [13] [15]. Tractography has been used to visualize 0,1 =M
and map out major white matter pathways in individuals angsing the cosine basis functions:
brain atlases [6] [16] [23] [24], segment specific white raatt
areas for region of interest analyses [12], quantify white
matter morphometry and connections [19] [22], and visealiz
the relationships between brain pathology and white matt
anatomy for clinical applications like neurosurgical piarg
[1] [17] [18]. However, tractography data can be challeiggin
to interpret and quantify. Whole brain tractography stadie
often generate many hundreds of thousand tracts. Recent @

efforts have.attempted to cluster [20] and automauca!lyhe Dirac-delta function. If we denote the coordinateq of
segment white matter tracts [21] as well as characterize (1,02, C3), the k-th degreecosine series representation
1,62,63), - esen

tract shape parameters [4]. Many of these techniques can %Se ven b
quite computationally demanding. Clearly efficient method 9 y
for representing tract shape, regional tract segmentatioh

¢ ipy =

Yo(t) = 1,1 (t) = V2 coglnt).

él'rhe representation is first introduced in [7]. The constant
V2 is introduced to make the eigenfunctions orthonormal in
[0, 1] so that

1
J DLW (1) dt = Sum,
0

k
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The Fourier coefficientg,, are estimated by solving the
system of equations obtained at thecontrol points:

k
Colty) = ) clobulty). 4)
1=0
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average reconstruction error

Fig. 1. Cosine representation of a tract at various degfeed.dots are control points. The degree 1 representatiostigight line that fits all the control
points in a least squares fashion. The error plot displagsatrerage reconstruction error in millimeter (vertical) dsgree (horizontal).

In the matrix notation, we write (4) as The images were isotropically resampled at lm@so-
lution before applying the white matter tractography algo-
rithm. The second order Runge-Kutta streamline algorithm
whereY = ((o(t5)), ¥ = (Pi(t;)) andC = (c10). Then the with tensor deflection [13] was used. The trajectories were
least squares estimation @fis given by initiated at the center of the seed voxels and were terimdnate
C = (W) Ty, if they either reached regions with the factional anisogrop
- : (FA) value smaller then 0.15 or if the angle between two
The proposed least squares estimation technique avoiensecutive steps along the trajectory was larger tihah
using the Fourier transform (FT) [4] [5] [9]. The drawbackEach tract consists of 105 54 control points. The distance
of the FT is the need for a predefined regular grid systefpetween control points is Imm. Whole brain tracts are stored
so some sort of interpolation is needed. After various exas a file of size approximately 600MB. Whole brain white
periments to obtain the optimal degree, we decided to ugeatter tracts for 74 subjects are further aligned using the
k = 19 through out the paper (Figure 1). This gives theaffine registration [10] of FA-maps to the average FA-map .
average error of 0.26mm along the tract. The plot of thg A tism Population Study

average reconstruction error for other degrees is given in . . . .
Figureg 1 9 9 The representation provides 60 dimensional feature vector
The advantage of the cosine representation is that, inste%aefﬂments) _f_or characterizing a single tract._We_ ha“.“?m
igated the utility of the proposed representation in thiétgb

of recording the coordinates of all control points, we onl o . . . L
need to record - (k + 1) number of parameters for all to discriminate the different clinical populations (42 iatit

possible tract shape. This is a substantial data reducti&qd 32 control subjects). We have focused our detailed

considering that the average number of control points is 1(%“'?“0'"("‘3""' study on the splenium of the corpus callosum,
(315 parameters). We recommend readers to kuge 30 which is manually masked by J.E. Lee [14]. Then the tracts
degrees for most 'applications - passing through a ball of radius 5mm at the spleninum are

identified. Each subject have 19431148 number of tracts

Yn><3 = ‘ynxkckx.%

I1l. APPLICATION TO AUTISM STUDY passing through the ball. The within-subject tract averggi
A. Image Acquisition and Preprocessing can be easily done within our representations by summing

DTI data were acquired on a Siemens Trio 3.0 Teslg"a coefficients of the same degree [7] (Figure 2). First two

Scanner with an 8-channel, receive-only head coil. Diffosi Images in Figure 3 shows the 74 average within-subjecttract

. : S . . _._color coded according to autism (red) and controls (blue).
weighted images were acquired in 12 non-collinear diffasio . . .
: 2 . e - The control subjects seem to show more clustering of fibers
encoding directions with diffusion weighting factor 1000

s/mn? in addition to a single reference image. Data acquisF—ompared to autistic subjects. So we have tested the italist

tion parameters included the following: contiguous (n@ga S|gn_|f|cance of the clustering.

. . . . . e - Given two tracts

fifty 2.5mm thick axial slices with an acquisition matrix of N 5

128x128 over a FOV of 256mm, 4 averages, repetition time _ -

(TR) = 7000 ms, and echo time (TE) = 84 ms. Co = éclowl andno = é Crob,
Eddy current related distortion and head motion of each L B N

data set were corrected using AIR and distortions fror{'he 2

field inhomogeneities were corrected using custom software [

-distance between the two tracts is defined as

30k ;1172
> (Z(Clo - dLoN’l(t)) 1 :
1=0

o=1

algorithms based on [11]. Distortion-corrected DW images p((,n)(t) =
were interpolated t@ x 2 x 2mm voxels and the six tensor

elements were calculated using a multivariate log-linearhe metric p computes the Euclidean distance between
regression method [2]. corresponding points along the two tracts at eacksiven



Fig. 2. The within-subject average tract (red) of 2149 fib@®49 fiber
tracts are subsampled to show few selective tracts (blukg dverage
tract is obtained by averaging the Fourier coefficients ofi®XTosine

representations. tstat

| (p-value)

a fiber consisting of n tractg',---,n™ within a subject,

the average traaf is obtained by averaging the coefficients
within the corresponding basis. Then we define the tract
concentration mag as

-0.06

Fig. 3. Each streamtube is the average of tracts passingghra ball
of 5mm radius around the splenium in a subject. White matteerdi in

| 1 ... n = Z | controls (blue) are more clustered together with smallezagting compared
n )= p(nt, M) : to autism (red). Thick streamtube at the bottom right imagéé population
i=1 ' average tract of all 74 subjects. Based on the fiber condmmranap, we

. constructedt-statistic and the correspondingvalue.
The value ofC increases as tracts get more clustered. The ponding

concentration mag is a function of the parametérand can
be projected along the average tractWe can compute the wj defines control points for a spherical curve. The spherical

average of the 74 average tracts by averaging the COEHCE‘C'e'Ehrves can be parameterized using the cosine representatio
of the average tracts. We have constructed the two sample

t-statistic (control - autism) using 7@values and projected k
the statistic on the population average tract in the third Colty) = crothu(ty). ®)
image in Figure 3. We have detected the higher concentration 1=0
of fibers in control subjects in the left hemisphetestat However, directly solving for each coordinatg, will

1.79,p-value 0.078). Autistic subjects show abnormal braiyiolate the quadratic constraint that the spherical curae h
lateralization effect in fibers passing through the spleniu to be embedded 082, i.e.

3
V. DIscussION Z [choll)l(tﬂr . (6)

Although the cosine representation is efficient for normal- o1 "l=o

izing and averaging tracts, unfortunately it is not tratistg This is easily seen from Figure 4, in which the degree 10

rotation and scale invariant. This might be a reason why the SR
resulting signal is a bit weakpgvalue< 0.078). One simple répresentation is visibly not embedded 34. The average

o . . . . absolute error for reconstruction is relatively large fowl
way of obtaining translation, rotation and scale mvananS o
egree due to the fact that the representation is no longer

representatmn IS tp prOJc_ect V.Vh'te matter fiber tracts onto gmbedded irs2. Note that at degree 30, the average abso-
unit sphere. Consider directional vectors = p; — pi_1

with the convention; = p;. The vectorss;, contain all the lute error is small enough, i.e. 0.0153mm, to be used for

: ; o subsequent modeling.
necessary information to reconstruct the original tract. : " .
. ) - The spherical projection based representation can not be
The advantage of using the spherical projection method , . . . . : .
obtained in a straightforward fashion and requires solving

is that it offers a translation, rotation and scale invaria . . .
. . . . hree least squares problem simultaneously with the gtiadra

tract representation. Two tracts with the identical shapte b . . .

; . . . . constraint (6) that relates the three equations (5). Wenail
at different positions will be identically represented as t ; g o :

' 7 Lo consider this issue in this paper and leave it for a futurdystu
same spherical curve. The translation information is store : . .
Another possible reason for the weak signal might be the

in v; value, which should be stored separately. : ; ! .
Vi . ep Y improper choice of the fiber concentration mapAlthough
Sincev; are unit vectors (except) in our tractography C increases as tracts get more clustered, it may not be a

algorithm [13], they are all ir$%. For a general case, which . . .

will likely happen for other tractography algorithms weProper metric for separating the groups. Possibly a better
. 3 . L ' metric would be to use the inverse of the sample variance,

projectv; onto S< via the spherical projectioR: i

o n—1

C(WI,"'»T]n): n > — 5 -
> i p2(min)?

Vi
P:ivi - w; = —Hle .
1
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Fig. 4.

Left: a single white matter fiber tract passing thtouge splenium of the corpus callosum.

30

average reconstruction error

Middle: the cosineesgntation of the spherical

projection of tracts at degree 10 and 30. The error plot displthe average reconstruction error in millimeter (vatfizvs. degree (horizontal) in the

spherical projection method.

This new metric is normalized by the total number ofz11]
tracts accounting for variable number of tracts for différe

subjects. [12]
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