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Gaussian kernel smoothing has been widely used in either 2D flat or 3D volume images, but it does not work on the curved cortical 
surface. However, by reformulating Gaussian kernel smoothing as a solution to a diffusion equation on a 2D manifold, we can 
generalize it to the cortical surface. This generalization is called d@usion smoothing and has been used in analysis of fMRI data 
on the cortical surface [l] and detecting cortical surface- 
area growth [3]. We give an exact mathematical formula- 
tion for the diffusion smoothing on friangulated cortical 
surfaces so that this technique can be used for any surface- 
based functional and structural analysis. As an illustration, 
we smooth the mean curvatures on the outer cortical sur- 
faces to show how the the smoothing actually incorporates 
the geodesic curvature information of the surface. 

Methods 

Gaussian kernel smoothing of the signal fix) in n-dimension 
with FWHM=4(hQ)‘“t’” is defined as the convolution of the 
n-dimensional Gaussian kernel c(x;t) with the signalf(j), i.e. 
F(xf)=f*c(x:f). It can be shown that the convoluted signal F 
is the solution of a diffusion equation dF/df=L[F] with the 
n-dimensional Euclidean Laplacian L. Since the cortical sur- 
face in non-Euclidean, the Euclidean Laplacian is not well 
defined on the cortical, surface. The generalization of the 
Laplace operator L to an arbitrary curved surface is called the 
L&ace-Beltrami operator and it is defined in terms of the 
Riemtnanian metric tensors. 
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Figure 1. A typical triangulation 

In order to estimate the Laplace-Beltrami operator on a 
triangulated cortical surface, we have used the finite &men? 
m?hod[2]. Let F(p,) be the signal on the i-th node p, in the 
triangulation. If p,,. .,pm are m-neighboring nodes around 
p=pO, the Laplace-B$rami operator at p is estimated by 
L[F(P)I=w,(F(P,)-F(P)) +. .+w,bYp,)-F(P)) with the 
weights w,=(cot~,+coi8,)/(T, +. +T,), where 4, and 0, are 
the two angles opposite to the edge p,-p in triangles and 
T, +. . + T,,, is the sum of the areas of m-incident triangles at 
p (Figure 1). Then the diffusion equation is solved via the/i&e 
difference scheme: 

Ffp,,t.+,)=Ffp.t,,)+(t,,, -t,)L[F(p,,t,,)] with the initial 
condition F(p,,t,)=flp,). After N-iterations, the diffused sig- 
nal is locally equivalent to the Gaussian kernel smoothing 
with FWHM=4(ln2)“2N”2(t,-r0)“2 [2]. 

The ASP method [3] is used to extract the outer cortical 
surfaces each consisting of 8 1920 triangles from MR scans. Figure 2. The mean curvature from the outer cortex is mapped 

At this surface sampling rate, the average intervertex dis- onto an ellipsoid during the diffusion smoothing. (a) Before the 

tance is about 4mm. The mean curvaturef(p,) of the cortical iteration (b) After 40 iterations (c) After 100 iterations 

surface is computed based on the least-squares estimation 
If a local quadratic surface [2]. Figure 2 shows the diffusion smoothing of the mean curvature with 5mm FWHM. If the smoothing 
Rere based on simple inter-nodal averaging, such sulcal pattern is not possible to obtain. 

Eonclusion 

3aussian kernel smoothing can be generalized to cortical surfaces enabling surface-based statistical analysis. The numerical 
mplementation will be freely available as Matlab code on the web at http:Nwww.math.mcgill&keith/BICstat. 

Zeferences 

11 Andrade A et al., Dereckon ofJMRI Activafion on fhe Cortical Su&ce, Neurolinage, 2000 (in press). 
21 Chung MK et al., http://www.math.mcgill.ca/chung/diffusio~diffusion.pdf, 2000 
31 Chung MK et al., Statistical Analysis of Cortical Surface Area Change, with an Application to Brain Growth, HBM2001 Conference 
31 MacDonald D et al., NeuroImage 12:340-356, 2000 


