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1. Motivation
We present a novel approach of obtaining white fiber anatomical connection 
probability in diffusion tensor imaging (DTI) via anisotropic Gaussian kernel 
smoothing. Our approach is compatible to other probabilistic approach such as 
solving an anisotropic diffusion equation (Batchelor et al., 2001) or Monte-Carlo 
random walk simulation (Kosh et al., 2002). Our formulation is simpler  than solving 
the diffusion equation and deterministic in a sense that it avoids using Monte-Carlo 
random walk simulation in constructing the connection probability so the resulting 
connectivity maps do not change from one computational run to another.  As a further 
usefulness of this new method, the same computational framework can also be used 
in smoothing any type of data along the white fiber tracks. This poster is based on a 
technical report Chung et al. (2003).

2. Anisotropic Gaussian kernel smoothing 

4. Log-transition Probability

Anisotropic kernel weights: weights are symmetric and the 
most weights are concentrated in the middle. Due to image 
noise, kernel weights may not be continuous. In such a case, 
isotropic smoothing with very small filter size on the Riemannian 
metric tensor can improve the performance. The above weights 
are unsmoothed version.

3. Riemannian metric tensors 

Anisotropic Gaussian kernel is a multivariate probability density function whose 
covariance matrix is not an identity. Anisotropic Gaussian kernel can provide a 
powerful directional smoothing technique if the covariance matrix is spatially 
adaptive.

If the tangent vectors of the stream lines are given by the principal eigenvectors of 
the diffusion coefficients of DTI,  the Riemannian metric tensors can be computed 
in terms of the components of the principal eigenvectors. By matching the 
covariance matrix to the Riemannian metric tensors proportionally, we have a 
spatially adaptive kernel in DTI. A more general approach would be to match the 
covariance matrix to the diffusion coefficient matrix proportionally. 

Our white fiber connectivity measure is based on the transition probability, which 
is the most natural probabilistic measure associated with diffusion process. The 
transition probability from point p to q is the conditional probability of going to q 
when a particle is at p under the diffusion. It can be shown that the transition 
probability can be estimated using the repeated applications of anisotropic 
Gaussian kernel smoothing with the bandwidth matrix determined adaptively 
(Chung, et al., 2003). If there are one million voxels within the brain, in average, 
each voxel will have the connection probability of one over a million, which is 
extremely small. Even though the connectivity measure based on the transition 
probability is a mathematically sound one, it may not be a good one for 
visualization so we take the log-scale of the transition probability and use it as a 
metric for measuring the strength of the anatomical connectivity. We will term this 
metric as the log-transition probability.

Left: White fiber tracks based on the tensor deflection algorithm (Lazar et al., 2003)  Middle: Arrows represent the 
principal eigenvectors. Color represents the corresponding eigenvalues.  Right: the log-transitional probability of 
connectivity from the seed point The seed point is taken in the splenium of corpus callosum.  

Log-transition probability: it is computed by repeatedly applying spatially adaptive 
anisotropic Gaussian kernel smoothing. Red numbers indicates the number of iterations.
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Left: Fractional Anisotropy (FA) map showing the seed point. Red box indicates the region of interest. Middle: Arrows 
represent the principal eigenvectors. Color represents the corresponding eigenvalues.  Right: log-transitional probability of 
connectivity from the seed point. After 200 iterations, there is no visible change of the connectivity map.

This is what would happen if 
isotropic kernel smoothing is 
applied


