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Introduction

The cerebral cortex has the topology of a 2D highly
convoluted sheet. The cortical thickness has been
used to characterize the brain shape [2]. The thick-
ness measurements are always contaminated with
noise. The noise may come from a scanner or due
to the partial volume effect. In order to increase
the signal-to-noise ratio and smoothness of mea-
surements on data defined on the cortex, diffusion
smoothing has been usually used before [1, 2]. We
present a completely new smoothing technique that
is simpler than diffusion smoothing for the estima-
tion of the cortical thickness.

Figure 1: Left: original cortical thickness of the
right hemisphere of an autistic subject. Right: heat

kernel smoothing withσ = 0.5 andk = 100
iterations.

Methods

The cortical surfaces are segmented from T1
weighted magnetic resonance images using a de-
formable surface algorithm (FreeSurfer) [5]. The
cortical thickness is computed as the minimum dis-
tance between the outer and inner cortical surfaces.
The thickness measurementY is assumed to follow
the additive model of true signalθ plus noiseǫ on the
cortex∂Ω:

Y (p) = θ(p) + ǫ(p), p ∈ ∂Ω. (1)

We assumeǫ to be a zero mean Gaussian random
field. To overcome the complexity of solving dif-
fusion equations to estimateθ on the cortex [2], we
have developed a much simpler method based on the
heat kernel smoothing which generalizes Gaussian
kernel smoothing in Euclidean space. We defineheat
kernel smoothing estimator of θ to be the convolution

θ̂(p) = Kσ ∗ Y (p) =

∫

∂Ω
Kσ(p, q)Y (q) dµ(q) (2)

whereµ(q) is a surface measure and heat kernelKσ

is defined in terms of the eigenvalues of the Laplace-
Beltrami operator. Based on theparametrix expan-
sion [6],

Kσ(p, q) ≈ 1

(2πσ)1/2

[
exp−d2(p, q)

2σ2

]
u0(p, q)

whered(p, q) is the geodesic distance betweenx and
y. The first termu0(p, q) → 1 asp → q. When the
manifolds is flat,u0(p, q) = 1 andd(p, q) = ‖p− q‖,
the Euclidean distance betweenp andq so the heat
kernelKσ becomes Gaussian kernel

Gσ(p, q) =
1

(2πσ)1/2
exp

[
− ‖p − q‖2

2σ2

]
.

Since kernelKσ is not a probability distribution on
manifolds, we normalize kernel in a small geodesic
ball Bp = {q ∈ ∂Ω : d(p, q) ≤ r} ⊂ ∂Ω :

K̃σ(p, q) =
exp

[
− d2(p,q)

2σ2

]
1Bp

(q)
∫
Bp

exp
[
− d2(p,q)

2σ2

]
dµ(q)

(3)

where indicator function1Bp
is defined as1Bp

(q) =

1 if q ∈ Bp and1Bp
(q) = 0 otherwise.

Figure 2: Cortical thickness computed at the
posterior right hemisphere of the autistic brain and
its iterated heat kernel smoothing withσ = 0.5 and

k = 100 iterations.

We present a couple of selected properties of a heat
kernel smoother. Other properties can be found in
[3].

Theorem 1 Kσ ∗ Y is the unique solution of the fol-
lowing initial value problem after time t = σ2/2:

∂f

∂t
= ∆f, f(p, 0) = Y (p) (4)

where ∆ is the Laplace-Beltrami operator.

Theorem 2 Heat kernel smoother minimizes the sum
of weighted squared residuals

∫

∂Ω
Kσ(p, q)

[
Y (q) − θ]2 dµ(q).

Theorem 3 If the covariance function of Y in (1) is
decreasing isotropic function of the form RY (p, q) =
ρ(d(p, q)), then

Var[Kσ ∗ Y (p)] ≤ VarY (p) for each p ∈ ∂Ω.

Hence heat kernel smoothing will reduce the vari-
ability of cortical thickness measurements.

Theorem 4 Heat kernel smoothing with large band-
width can be decomposed into multiple kernel
smoothing with smaller bandwidth via

Kσ ∗ · · · ∗ Kσ︸ ︷︷ ︸
k times

∗f = K√
kσ

∗ f.

Figure 3: Typical triangular mesh withm = 6
neighboring vertices aroundp = q0.

For triangular mesh that represents the cortical thick-
ness, it is natural to take a discrete measureµ in
defining convolution. Letq1, · · · , qm be neighbor-
ing vertices ofp = q0 (Figure 3). Then the discrete
version of heat kernel is given by

W̃σ(p, qi) =
exp

[
− ‖p−qi‖2

2σ2

]

∑m
j=0 exp

[
− ‖p−qj‖2

2σ2

]

and discrete convolution

W̃σ ∗ Y (p) =

m∑

i=0

W̃σ(p, qi)Y (qi).

This is the generalization ofNadaraya-Watson esti-
mator [4] defined in Euclidean space to manifolds.

Results

Heat kernel smoothing with large bandwidthσ = 5
mm is performed iteratively with smaller bandwidth
σ = 0.5 mm. Figure 1 and 2 shows before and after
heat kernel smoothing. Heat kernel smoothing de-
crease the variability (Theorem 3) while increasing
the Gaussianess (Figure 4) which would be useful
for random field based multiple comparison.
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Figure 4: QQ-plot of the original cortical thickness
measure. Right: QQ-plot after heat kernel

smoothing withσ = 5 mm.
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