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| ntroduction

The cerebral cortex has the topology of a 2D hig
The cortical thickness has [
used to characterize the brain shape [2]. The th

convoluted sheet.

ness measurements are always contaminated
noise. The noise may come from a scanner or
to the partial volume effect.

smoothing has been usually used before [1, 2].
present a completely new smoothing technique

Is simpler than diffusion smoothing for the estin

tion of the cor.ticl thickness.

Figure 1: Left: original cortical thickness of the

right hemisphere of an autistic subject. Right: hea

kernel smoothing witlr = 0.5 andk = 100
iterations.

M ethods

The cortical surfaces are segmented from

weighted magnetic resonance images using a

T
cortical thickness is computed as the minimum ¢
tance between the outer and inner cortical surfaceBere A isthe Laplace-Beltrami operator.

The thickness measurementis assumed to follow Theorem 2 Heat kerne smoother minimizes the sum

formable surface algorithm (FreeSurfer) [5].

the additive model of true signélplus noise on the
cortexofl:

Y(p) = 0(p) + €(p),p € 0N (1)

We assume to be a zero mean Gaussian rand
field. To overcome the complexity of solving d

fusion equations to estimateon the cortex [2], We ,(d(p, ¢)), then

have developed a much simpler method based ol
neat kernel smoothing which generalizes Gaus
Kernel smoothing in Euclidean space. We deheat
ker nel smoothing estimator of 4 to be the convolutior

0(p) = Ko Y(p) = /(9 Kolp.0)Y (@) dua) @)

0(p)

wherepu(q) is a surface measure and heat kerkigl
IS defined in terms of the eigenvalues of the Laplz
Beltrami operator. Based on tiparametrix expan-
sion [6],

1 d*(p, q)
(27?0)1/2 202

whered(p, q) is the geodesic distance betweeand
y. The first termug(p,q) — 1 asp — ¢. When the
manifolds is flatug(p, q) = 1 andd(p, q) = ||p — q||,
the Euclidean distance betwegrandq so the hea

Ks(p,q) = exp — up(p, q)

In order to Incres
the signal-to-noise ratio and smoothness of n
surements on data defined on the cortex, diffus
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Since kernelK, Is not a probability distribution ol
manifolds, we normalize kernel in a small geode
hpall B, = {q € 0Q : d(p,q) < r} C 00

jeen 2

ick- =~ e [~ 815 (9

with Ko (p7 Q) — 2(p.q) (3)
5 exp [ — 555 dulq)

due P

sghere indicator functiol p is defined ad g (¢) =
idaf ¢ € Byandlp (¢) = 0 otherwise.
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Figure 2: Cortical thickness computed at the
osterior right hemisphere of the autistic brain a

|E[)s iterated heat kernel smoothing with= 0.5 and
k = 100 iterations.

We present a couple of selected properties of a
kernel smoother. Other properties can be foun
[3].

Theorem 1 K, % Y isthe unique solution of the fol-
Towi ng initial value problem after timet = o2 /2:

| >4

-4

de-
he OF _ A 0)=Y 4
he == Af f(p,0) = Y(p) (4)

of weighted squared residuals

Ko(p.q)[Y(q) — 0] du(q).
0

OfTheorem 3 If the covariance function of Y in (1) is
fdecreasing isotropic function of the form Ry (p,q) =

N the
cianvVar[Ky = Y (p)] < VarY (p) for eachp € 05.

Hence heat kernel smoothing will reduce the vi
1 ability of cortical thickness measurements.

Theorem 4 Heat kernel smoothing with large band-
width can be decomposed into multiple kernel
smoothing with smaller bandwidth via

1C6- KO*”'*K@*f:K\/Ea*f'

k times

Figure 3: Typical triangular mesh with, = 6

kernel K, becomes Gaussian kernel

1 _ 4ll2
Golp.4) = =l
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nFor triangular mesh that represents the cortical thick
q1Iess, It Is natural to take a discrete measurm
defining convolution. Leyy,--- , ¢, be neighbor-
Ing vertices ofp = ¢y (Figure 3). Then the discrete
version of heat kernel is given by

lp—aill”

__ exp | — o ]
Wa(pa Q’i) — o (ﬁp_qjl‘z
Z]ZO €Xp [_ 2072 }

and discrete convolution
—_~— m —_~—
WoxY(p) = Wolp, @)Y (a).
i=0

This Is the generalization dfadaraya-Watson esti-
mator [4] defined in Euclidean space to manifolds.

Results

Heat kernel smoothing with large bandwidth= 5
mm is performed iteratively with smaller bandwidth

nhel = 0.5 mm. Figure 1 and 2 shows before and after

heat kernel smoothing. Heat kernel smoothing de
crease the variability (Theorem 3) while increasing
e Gaussianess (Figure 4) which would be usefu
far random field based multiple comparison.
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measure. Right: QQ-plot after heat kernel
smoothing witho = 5 mm.
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