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Introduction

When data lie on the 2D convoluted brain cortex, data smoothing must be
weighted according to geodesic distance along the surface. On the curved sur-
face, a straight line between two points is not the shortest distance so one may
incorrectly assign less weights to closer observations.
The previously developeddiffusion smoothingformulates smoothing as the pro-
cess of heat diffusion by explicitly solving an isotropic diffusion equation with
the given data as an initial condition [1]. The drawback of the diffusion smooth-
ing approach is the complexity of setting up a finite element method and making
the numerical scheme stable. To address these shortcomings, we propose a sim-
pler and more efficient method calledheat kernel smoothingand its extension
calledgeodesic kernel smoothing[2].

Figure 1: Comparison of different kernel weights between 3D Gaussian kernel smoothing and
2D heat kernel smoothing.

Heat kernel smoothing

ObservationsY measured on the cortex∂Ω is assumed to follow the additive
model of true signalθ plus noiseε: Y (p) = θ(p) + ε(p), p ∈ ∂Ω. Then we
estimateθ usingheat kernel smoothing:

θ̂(p) = Kσ ∗ Y (p) =

∫

∂Ω
Kσ(p, q)Y (q) dµ(q),

whereµ(q) is the surface measure andKσ is the heat kernel with bandwidthσ

[2]. For smallσ, it can be shown thatKσ(p, q) ≈ 1
(2πσ)1/2

[
exp−d2(p,q)

2σ2

]
, where

d(p, q) is the geodesic distance betweenp andq. For largeσ, the smoothing is
performed by iteratively:K√

kσ
∗ f = Kσ ∗ · · · ∗Kσ︸ ︷︷ ︸

k times

∗f. The MATLABcode

can be downloaded freely fromhttp://www.stat.wisc.edu/
∼mchung/hk/hk.html.

Figure 2: Heat kernel smoothing on real and simulated data withσ = 1. The numbers under
the images are the numbers of iterations.

Figure 3: Sulcal pattern is extracted from the cortex using the sum of the principal curvatures
onto a unit sphere [1]. Heat kernel smoothing withσ = 0.01 andk = 1, 2, 3, 4, 8, 10, 25 shows

the varying smoothness of the sulcal pattern.

Figure 4: Variance reduction property of heat kernel smoothing [2]. Left: Within subject
variance over the number of iterations withσ = 1 and0 ≤ k ≤ 5000. Right: Between subject

variance over the number of iterations withσ = 1 and0 ≤ k ≤ 200.

Geodesic kernel smoothing

In thegeodesic kernel smoothingformulation, we compute the heat kernel ex-
plicitly and assign the kernel weights accordingly. We compute the geodesic
distance on the cortex using the dynamic programming (Dijktra’s algorithm).
Then the heat kernel is constructed by assigning weights as a function of the
geodesic distance and appropriately normalizing the kernel. This approach
avoid the necessity of choosing a small bandwidth for convergence.

Figure 5: Thickness maps are projected onto a unit square before and after smoothing. Left:
original noisy thickness map. Right: Heat kernel smoothing withσ = 1 andk = 200 iterations.
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