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(Abstract

We explored the possibility of developing an automatic diagnostic
tool for detecting autism based on MRI measurements. Since the
two previous structural imaging studies [1] [2] strongly suggested
there were significant abnormality in the corpus callosum (CC)
region, the methodology is concentrated in this area. For this pur-
pose, we have developed a new framework for representing and
classifying the CC boundary as a Fourier descriptor [3] [6]. The
Fourier coefficients can be viewed as a multivariate measurement
that characterizes the CC boundary, and later feed into a classifica-
tion algorithm.
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(Segmentation

Three Tesla T1-weighted MR scans were acquired for 15 high functioning
autistic and 12 control right-handed males. The CC boundaries were
extracted using the gradient vector flow (GVF) snakes [6] on the mid-
saggital sections of MRI. The GVF snakes have advantages over the
traditional snakes with their larger capture range and ability to move into
the concavity. (Figure 1).

Figure 1. Results of CC boundaries by GVF snakes.
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(Parametrization

The extracted CC boundaries were parameterized by arc-length. Clas-
sical curvature calculation uses the values of first and the second
derivatives, and therefore need a parametrization of the given curves.
A new algorithm for computing the curvature, which is invariant under
parametrization, is developed. An obtained CC boundary is a discrete
curve {Pi}n

i=1. Let A(Pi−1, Pi, Pi+1) be the area of triangle with vertices
Pi−1, Pi, Pi+1 and “sign” is 1 if the triangle is inside the CC boundary and -1
otherwise. Curvature at Pi can be calculated using (as shown in Figure 2)

k̂i = sign · 4A(Pi−1, Pi, Pi+1)

‖Pi−1 − pi‖ · ‖Pi+1 − Pi‖ · ‖Pi+1 − Pi−1‖
(1)

a simple closed (no-cross) curve with absolutely continuous second
derivatives, let

h = max
i=1,2,···,n−1

‖Pi+1 − Pi‖. (2)

If the CC boundary is a simple noncrossing closed curve with absolutely
continuous second derivatives, then it has an absolutely continuous cur-
vature function k. We can show that

‖k̂ − k‖∞ = O(h log(h)), as h → 0.

where ‖ · ‖∞ is the L∞-norm.

A simple arc-length parametrization {r(si) = Pi}, i = 1, 2, · · · , n of an
obtained CC boundary Pi

n
i=1 is given by

s1 = 0

si =
i−1
∑

l=1

‖Pl+1 − Pl‖, i = 2, 3, · · · , n.

This parametrization can be a good approximation if the curvature is
small (Figure 2, bottom right), while it also can be a very poor approxima-
tion if the curvature is large (Figure 2, top right).
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Figure 2. Left, the demonstration of how to calculate curvature; Right
comparison of distance of two points with the arc-length between two
points: top, when curvature is large; bottom, when curvature is small.

We designed an algorithm of arc-length parametrization utilizing cur-
vature information, which gives a more accurate approximation. Let r(s)

be the parametrization of a CC boundary, T (s) be the unite tangent
vector andN (s) be the unit normal vector. Based on the Frenet formulae







ṙ(s) = T (s)

Ṫ (s) = k(s)N (s)

we designed the following parametrization method

s1 = 0

si = si−1 + ‖Pi − Pi−1‖ + λ
√

ki‖Pi−1 + Pi+1 − 2Pi‖.

where λ is a parameter that controls the correction factor, and curva-
ture ki is required to be independent of parametrization. Using (1) is an
advantage over the classical method. With the higher order correction
factor using curvature information, our parametrization has order of con-
vergence o(h2), while the simple parametrization method only has order
of convergence o(h), where h is defined in (2). Figure 3 shows that the
simple parametrization is under-estimated, but our method gives a better
parametrization (closer to the ground truth).

Figure 3. Left, simulated CC boundaries; Right, the comparison of two
parametrization results versus true parametrization.
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(Curvature-based registration

Curvature function {k(si)}n
i=1 of closed curve {r(si) = (x(si), y(si))τ}n

i=1 is
invariant under a rigid body motion. The corresponding closed curve can
be reconstructed from the curvature function by

x(s) = x(s1) +

∫ s

s1

cos(θ(s))ds,

y(s) = y(s1) +

∫ s

s1

sin(θ(s))ds,

where θ(s) =
∫ s

s1
k(s)ds.

Figure 4. Left: global shift registration results of curvature functions; right:
registered closed curves recovered by registered curvature functions.

The global shift registration technique [5] is used to align 27 CC curves.
Aligned curves {k∗

i (s) = ki(s + δi)}27
i=1 minimize

REGSSE =
27

∑

i=1

∫ 2π

0

[ki(s + δi) − µ̂(s)]2ds

=
27

∑

i=1

∫ 2π

0

[k∗
i (s) − µ̂(s)]2ds

where µ̂(s) is the mean curve of {k∗
i (s)}27

i=1. The optimal aligned curves
minimize the summation of sum of square errors (SSE) of aligned curves
from their mean curve.
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(Classification

As a data reduction technique, the CC curves were reparametrized by the
finite Fourier series on the coordinate functions. The Fourier coefficients
were used as predictors in classifying the CC curves into two groups: nor-
mal controls and autism. Decision-tree-based classification techniques
[3] were applied to determine if it is possible to differentiate autism purely
based on the shape of CC curves. Decision-tree-based methods have
been widely used in statistical literatures as a nonparametric method and
there is no explicit statistical assumptions about predictors and response
variables. When the classification boundary is expected to be nonlinear
(Figure 5 left), the regression tree methods should perform better than
the linear discriminant analysis (Figure 5, right).

Figure 5. Left: classification using regression trees. Right: linear discrim-
inant analysis classification.
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(Results

Regression tree methods [4]: CRUISE, GUIDE are used, Linear Discrim-
inant Analysis (LDA) is also used for comparison.

Methods LDA CRUISE GUIDE
Misclassification rate 0.25 0.22 0.15

Table 1. The classification results of various methods.

With a small sample size of 27 subjects, we still managed to achieve an
impressive 15% misclassification rate (85% correct diagnostic rate) con-
sistent with the result of two previous structural imaging studies done on
the CC [1] [2]. With the additional social and behavioral measurements,
the correct diagnostic rate can be improved.
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