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Introduction

Over the years, various diffusion based corti-
cal surface data smoothing techniques [1] [3]
have been proposed but without any numeri-
cal validation. We present a novel validation
technique that uses the analytical solution of a
diffusion equation as the ground truth. The pro-
posed framework is used in validating the per-
formance of heat kernel smoothing [3].

Heat kernel smoothing

Figure 1: Heat kernel smoothing of cortical thickness

with σ = 1 and n = 20, 100, 200 iterations. As n increases,

the smoothing converges to the sample mean.

Heat kernel smoothing solves the following
isotropic diffusion diffusion

∂g

∂σ
= ∆g, g(p, σ = 0) = f (p)

by iteratively performing kernel smoothing. The
method has been used in many studies due to
its numerical simplicity. For an arbitrary mani-
fold M, heat kernel is approximated using the
the parametrix expansion [3]:

Kσ(p, q) =
1

(2πσ)1/2
e−

d2(p,q)

2σ2
[
u0(p, q) +O(σ2)

]
,

where d(p, q) is the geodesic distance and
u0(p, q) → 1 as p→ q.
Heat kernel smoothing of surface measure-
ment f is then defined as the convolution

Kσ ∗ f (p) =

∫

M
Kσ(p, q)f (q) dµ(q). (1)

For large σ, the convolution is performed itera-
tively with a smaller bandwidth as

Kσ ∗ f = Kσ/n ∗ · · · ∗Kσ/n
︸ ︷︷ ︸

n times

∗f.

Figure 1 shows the process of heat ker-
nel smoothing of on cortical thickness. The
MATLAB implementation can be found in
www.stat.wisc.edu/∼mchung/hk.

Weighted Fourier Series

Let λj and ψj be the eigenvalues and eigen-
functions of the Laplace-Beltrami operator ∆
defined on M, i.e.

∆ψj = λjψj.

Heat kernel is defined as

Kσ(p, q) =

∞∑

j=0

e−λjσψj(p)ψj(q).

The heat kernel smoothing is then expressed
as

Kσ ∗ f (p) =

∞∑

j=0

e−λjσfjψj(p), (2)

where fj is the Fourier coefficient. The series
expansion of heat kernel smoothing is called
the weighted Fourier series [2], which pro-
vides the analytic reformulation of heat kernel
smoothing.

Figure 2: Weighted Fourier series representation of

cortical thickness. The first row shows the spatial

frequency fjψj at the given degree. The second row

shows the weighted Fourier series.

Validation Framework

Numerical implementation of heat kernel
smoothing (1) is validated against the analytic
formulation (2). Unfortunately for the lack of an-
alytic basis in an arbitrary manifold, we validate
on a unit sphere.
Cortical thickness is mapped onto a unit sphere
via a cortical flattening map ζ : M → N (Figure
2) and its Fourier series expansion is obtained
with respect to spherical harmonics:

f (p) =

k∑

j=0

fjψj(p). (3)

Then taking the expression (3) as the input sig-
nal (simulated cortical thickness in Figure ), we
perform heat kernel smoothing:

Kσ ∗ f (u) =

k∑

j=0

e−λjσfjψj(p). (4)

Equation (4) serves as the ground truth to be
compared to heat kernel smoothing.

Results

We have compared the output of heat kernel
smoothing and the ground truth (Figure 3). We
have used σ = 0.001 and the degree 42 degree

spherical harmonics. For heat kernel smooth-
ing, varying number of iterations 1 ≤ n ≤ 70
and the corresponding bandwidth σ = 0.001/n
were used. The minimum relative error is ob-
tained when n = 21. The relative error is up
to 0.055 at some vertex and the mean relative
error is 0.0067. Hence, we conclude that heat
kernel smoothing provides a sufficiently good
approximation to isotropic diffusion.

Figure 3: Cortical thickness is simulated from the real

data. The ground truth is analytically constructed from

the simulation. Heat kernel smoothing of the simulation

is compared against the ground truth. The plot is the

relative error over the number of iterations.

Discussion

Although the proposed method provides the
first validation framework for surface data
smoothing, the validation has been limited to
a unit sphere. In order to extend the vali-
dation framework to an arbitrary manifold, we
have constructed the eigenfunctions of the
Laplace-Beltrami operator using the finite ele-
ment method [4] (Figure 4). We are currently
investing this generalization.

Figure 4: Eigenfunctions of the Laplace-Beltrami

operator on an average amygdala surface
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