Persistent Network Homology from the perspective of Dendrograms

Hyekyoung Lee¹, Moo K. Chung^{1,2}, Hyejin Kang¹, Boong-Nyun Kim¹, Dong Soo Lee¹

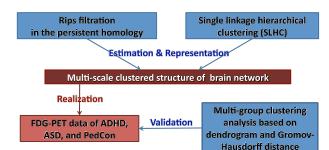
¹Seoul National University, Seoul, Republic of Korea, ²University of Wisconsin, Madison, WI

Introduction

Modular structure with the fixed scale

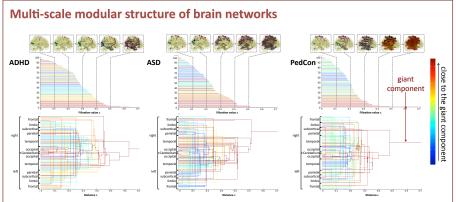
- The modular structure of brain connectivity helps to understand from the local module information to their global relationships of brain network [1,2].
- Usually, we select only one optimal modular network by maximizing the predefined metric such as a modularity. But the optimal network can be changed depending on the metric and it is not yet known which network is truly modular.
- In this study, we seek the evolutionary changes of modular structures when the threshold in correlation matrix increases, instead of choosing a fixed modular structure. It can be directly related with the hierarchical clustering with the persistent property and visualized by a dendrogram.
- As an application, we constructed the brain networks using the FDG-PET data of 24 attention deficit hyperactivity disorder (ADHD), 26 autism spectrum disorder (ASD) children and 11 pediatric control (PedCon) subjects.
- The difference between the changes of the modular structures was compared by Gromov-Hausdorff distance [3,4], which measures the distance between dendrograms.

Outline



Network Construction Different adjacency matrices are constructed depending on the thresholds. Connectivity Matrix Adjacency Matrix

Distance = 1 - positive correlation



Which one do you prefer?

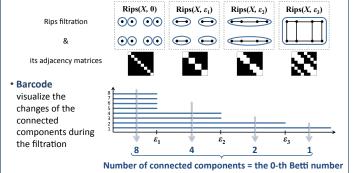
Persistent Homology Given point cloud data X & their metric $d(x_i, x_i)$, $X = \{x_1, x_2, ..., x_8\}$ $\int d(x_1, x_2) = d(x_3, x_4) = \dots = \varepsilon_1 - \delta,$ $d(x_2, x_3) = d(x_6, x_7) = \varepsilon_2 - \delta,$ $d(x_1, x_5) = d(x_2, x_6) = \dots = \varepsilon_3 - \delta$ Connectivity matrix $d(x_i, x_i)$

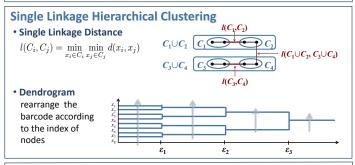
Rips complex. Rips(X, ε)

approximate the topology of the point cloud data by connecting two point cloud data, x_i and x_i , if $d(x_i, x_i) \le \varepsilon$

· Rips filtration

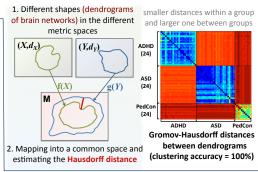
the sequence of Rips complexes satisfying the persistent property such as $\operatorname{Rips}(X, 0) \subseteq \operatorname{Rips}(X, \varepsilon_1) \subseteq \operatorname{Rips}(X, \varepsilon_2) \subseteq ... \subseteq \operatorname{Rips}(X, \varepsilon_n)$ for $0 \le \varepsilon_1 \le \varepsilon_2 \le ... \le \varepsilon_n$





Gromov-Hausdorff Distance

We constructed 61 dendrograms using 24 ADHD, 26 ASD and 11 PedCon jackknifed resampled datasets and estimated their pairwise differences based on Gromov-Hausdorff



- [1] Bassett, D. (2006), The Neuroscientist, vol. 12, pp. 512-523. [2] Chen, Z.J., et. al. (2008), Cerebral Cortex, vol. 18, pp. 2374-2381.
- [3] Calrlsson, G. and Memoli, F. (2010), JMLR, vol. 11, pp. 1425-1470.
- [4] Lee, H., et. al. (2011), MICCAI2011.