Persistent Network Homology from the perspective of Dendrograms
Hyekyoung Lee!, Moo K. Chung'2, Hyejin Kang', Boong-Nyun Kim?, Dong Soo Lee!

1Seoul National University, Seoul, Republic of Korea, 2University of Wisconsin, Madison, WI

Introduction
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network [1,2].

« Usually, we select only one optimal
modular network by maximizing the predefined metric such as a modularity.
But the optimal network can be changed depending on the metric and it is not
yet known which network is truly modular.

*In this study, we seek the evolutionary changes of modular structures when
the threshold in correlation matrix increases, instead of choosing a fixed
modular structure. It can be directly related with the hierarchical clustering
with the persistent property and visualized by a dendrogram.

* As an application, we constructed the brain networks using the FDG-PET data
of 24 attention deficit hyperactivity disorder (ADHD), 26 autism spectrum
disorder (ASD) children and 11 pediatric control (PedCon) subjects.

* The difference between the changes of the modular structures was compared
by Gromov-Hausdorff distance [3,4], which measures the distance between
dendrograms.
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* Rips complex, Rips(X;, &) Connectivity matrix d(x;, x;)
approximate the topology of the point cloud data by connecting two point

cloud data, x; and X, if d(x;, xj) <eg

* Rips filtration
the sequence of Rips complexes satisfying the persistent property such as
Rips(X, 0) < Rips(X, €,) S Rips(X, &,) & ... S Rips(X, ¢,) for0<e<e,< .. <S¢,
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Gromov-Hausdorff Distance

We constructed 61 dendrograms using 24 ADHD, 26 ASD and 11 PedCon jackknifed
resampled datasets and estimated their pairwise differences based on Gromov-Hausdorff
distance.
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