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Introduction: 
A shape representation is an important problem to understand brain 
morphological changes related to illness or disease. We represent a new 
shape representation method using the eigenfunctions of Laplace-Beltrami 
(LB) operator. Since the LB-eigenfunctions reflect the intrinsic geometry of 
the surfaces, cortical surfaces can be intrinsically represented as a Fourier 
series expansion using the LB-eigenfunctions [4]. However, some coefficients 
may not necessarily contribute significantly in reconstructing the surfaces. 
Thus, we aim to find an optimal sparse solution for the Fourier expansion 
using an l1-penalty. By doing so, we can avoid surface smoothing [1,2,5] that 
reduces statistical power. We applied this sparse representation in detecting 
abnormal local shape variations in autism via multivariate general linear 
modeling [2].  
 

Methods: 
Data: 
We obtained 3-T brain MRI data for 16 high functioning autistic and 11 
control right-handed males, with average ages of 17.18 ± 2.89 and 16.13 ± 
4.51 respectively. After a sequence of image processing steps, outer cortical 
surfaces are extracted as triangular mesh with n=40,962 vertices via 
deformable surface modeling [1] which establishes a surface correspondence 
across all the surfaces.  
 
Fourier Analysis: 
The eigenfunctions Ψj of the LB operator ∆ on a cortical manifold, i.e.  
 

∆Ψj	 =	 -	 λjΨj,	 
	 

form an orthonormal basis for the space of square integrable functions on the 
manifold. Taking surface coordinates as functions to be estimated, the 



coordinates can be represented as a linear combination of the LB-
eigenfunctions. Firstly, we construct a template cortical surface by averaging 
coordinates of corresponding mesh vertices. Then, the LB-eigenfunctions are 
computed on the template mesh using the Cotan formulation [4,5]; Fig. 1 
shows few representative eigenfunctions. The MATLAB code is given at  
 http://brainimaging.waisman.wisc.edu/~chung/lb. The Fourier coefficients 
can be obtained from the least squares estimation (LSE) by solving the 
system of linear equations 
 

ｐi	 = Ψβ, 
 

where ｐi is the i-th coordinate vector, Ψ is a matrix having LB-eigenfunctions 
as columns, and β is the Fourier coefficient vector. Fig. 2 blue line shows 
absolute value of the coefficients estimated by the LSE with first 7396 
eigenfunctions for one particular coordinate. 
 
Sparse representation: 
We can get a more compact and sparse representation than LSE by assuming 
some of coefficients are not contributing significantly. This is achieved by 
solving the following l1-norm regularization problem [3]:  
 

min (‖ｐi	 - Ψβ ‖2)2 + λ‖β‖1.	 
	 

The parameter λ controls the sparsity, and we empirically selected λ=10 
leading to sufficient sparsity (Fig. 2 red line); in average, 1100 nonzero 
elements out of 7396 remain.  
 
Multivariate general linear model: 
To localize shape difference between the groups, we used a multivariate 
linear model [2]: 
 

[ｐ1 ｐ2	 ｐ3	 	 ] = B0 +	 age	 B1	 +	 group	 B2	 +	 ageㆍgroup	 B3.	 
 
Results: 
We have tested the group effect (B2) while accounting for age effect, but 
could not detect any shape difference between autistic and control groups at 
α=0.1 level (corrected). However, for an interaction between age and group 
(B3), we detected the regions where the rate of local shape variation is 
different (Fig. 3a). Fig. 4 shows regression plots at the most significant 
vertex (maxF = 67.31, corrected p= 0.006, Fig. 3a arrow) in the left 
prefrontal cortical region. With the LSE (Fig. 3b), we have observed similar 
results but with less smoothing (maxF = 79.38, p= 0.005).  
 
Conclusions: 
The proposed sparse shape representation demonstrates its potential for 



modeling cortical shape variations without using surface-based smoothing 
that reduces statistical power unnecessarily.  
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