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Introduction
We present a new sparse shape representation method using the
eigenfunctions of Laplace-Beltrami (LB) operator. Cortical surfaces
can be intrinsically represented as a Fourier series expansion using
the LB-eigenfunctions as a basis. However, some coefficients may not
necessarily contribute significantly in reconstructing the surfaces. We
sparsely filter those significant coefficients by imposing the `1-penalty.

We apply this sparse representation in detecting abnormal local cor-
tical shape variations in autism via general multivariate linear modeling
(GMLM) [2].

Laplace-Beltrami Eigenfunctions
The eigenfunctions ψj of the LB operator ∆ on a cortical surface are
given by so

∆ψj =−λjψj,

form an orthonormal basis on the surface. The LB-eigenfunctions are
computed on the template surface using the FEM discretization [3, 4]
(Figure 1).

The i-th surface coordinate pi can be represented as a linear combi-
nation of the LB eigenfunctions:

pi = [ψ0,ψ1, · · · ,ψk]︸ ︷︷ ︸
Ψ

β,

where β= (β0, · · · ,βk) is the unknown coefficients to be estimated.

Figure 1: Few eigenfunctions of Laplace-Beltrami operator on the tem-
plate surface.

Sparse Representation
The coefficients β are estimated sparsely by minimizing `1-norm penal-
ity

β̂= argmin
β
‖pi−Ψβ‖22+τ‖β‖1.

The parameter τ controls the sparsity and it was empirically selected
τ= 10. Figure 2 shows the results.

Figure 2: The plot of |βj| vs. degree j for the x-coordinate. The left plot
is the enlargement of the black box on the right. The least squares
estimation is colored in blue while the sparse estimation is colored in
red. In average, only 1100 out of 7396 coefficients remain significant.

General Multivariate Linear Model
We applied the method in discriminating the cortical shape of 16 autis-
tic and 11 control subjects (17.18±2.89 and 16.13±4.51 years respec-
tively). The details on MRI acquisition and image processing can be
found in [1].

To localize shape difference between the groups, we used the GMLM
[2]:

[p1 p2 p3] = b0+age b1+group b2+age ·group b3+ε.
We have tested the group effect (b2) while accounting for age but could
not detect any shape difference between autistic and control groups
even at α = 0.1 level (corrected). However, we detected the significant
growth rate difference (b3) in the left prefrontal cortical regions (Figure
3).

Figure 3: F-statistic map of significance of the interaction term (b3). (a)
Least squares estimation (b) Sparse estimation. (c) The linear fit show-
ing growth rate difference at the most significant vertex (max F = 67.31,
corrected p= 0.006) in left prefrontal cortical region.

Conclusion
The proposed sparse shape representation demonstrates its potential
for modeling cortical shape variations without using often used surface-
based smoothing that reduces statistical power unnecessarily.
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