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Introduction:  
We present the novel Wasserstein graph clustering method for networks 
(Anand, 2021). The Wasserstein clustering penalizes the topological 
discrepancy between 0D and 1D homological features. The Wasserstein 
clustering outperforms the widely used k-means clustering. We applied the 
method in more accurately determining the genetic contribution of the 
dynamically changing state spaces in rs-fMRI.  
 
 
Methods:  
Subjects: Rs-fMRI were collected on a 3TMRI scanner (Discovery MR750, GE) 
with a 32-channel RF head coil array. The functional scans were processed with 
AFNI (Burghy, 2016). 479 healthy subjects consisting of 231 males and 248 
females ranging in age from 13 to 25 years. The dataset also consists of 132 
monozygotic (MZ) twin pairs and 93 same-sex dizygotic (DZ) twin pairs.  
 
Preprocessing: We parcellated the brain volume into 116 non-overlapping 
brain regions (Tzourio, 2002). The fMRI data were averaged across voxels 
within each parcellation resulting in 116 average fMRI signals per subject. The 
averaged fMRI signal is further temporally smoothed using heat kernel 
expansion (Huang, 2019). The smoothed fMRI are correlated across 
parcellations form dynamically changing correlation matrices of size 116 by 
116 at 295 time points.  



 



Graph filtration: Graph filtration was performed on correlation matrices to 
extract persistent homological features by thresholding one edge at a time 
(Figure 1-a). Betti numbers β0 and β1, which measures the number of 
connected components and cycles respectively, are monotone over the 
filtration (Chung, 2019). The edge weights that increase β0 or decrease β1 are 
called the birth or death values respectively (Songdechakraiwut, 2021). 
 
Wasserstein graph clustering: The Wasserstein distance is given by the 
smallest sum of squared distance between birth and death values. The 
optimization is solved as a linear assignment problem. The Wasserstein 
distance is used to cluster a collection of graphs by minimizing the within-
cluster distance. The minimization is done as the two-step optimization like 
the expectation maximization (Bishop, 2006). Since the algorithm depends on 
the initial estimation of the cluster center, the clustering is run 10 times with 
different initial seeds.  
 
Validation: For testing false positives (no cluster difference), k-means 
clustering incorrectly clustered with 1.00 +/- 0.04 accuracy while the 
Wasserstein clustering clustered with 0.53 +/- 0.08 accuracy. For testing false 
negatives (Figure 2-a), k-means clustering only able to correct cluster with 
0.83 +/- 0.16 accuracy while the Wasserstein clustering achieved remarkable 
with 0.96 +/- 0.10 accuracy. 
 
Results: 
We clustered time varying time correlation matrices at the group level. The 
optimal number of clusters is determined to be 3 through the elbow method 
(Huang, 2020). The ratio of within-cluster to between-cluster distance is 0.034 
+/- 0.012 for Wasserstein clustering and 0.202 +/- 0.047 for k-means 
clustering (Figure 2-b). The six times smaller ratio for the Wasserstein 
clustering demonstrates the better model fit. Figure 2-c displays the 
topological average brain networks within each cluster. The averaging is done 
through the Wasserstein distance, which provides 6 times shaper averaging 
performance compared to the Euclidean distance.  
 
We determined the extent of the genetic influence on the estimated state 
spaces. We computed heritability index through the MZ- and DZ-twin 
correlations (Chung, 2019). Figure 2-c displays the estimated heritability index. 
The heritability of the first state is characterized by lateralization of the 
hemisphere connections. The heritability of the second state is characterized 
by asymmetric front and back connections (Chen, 2008). The method provides 
far more accurate and stable heritability index map than previous attempts 
(Chung, 2019).   
   
 
Conclusions: 
Through the proposed novel persistent homological clustering method, we 
were able to estimate accurate heritability index map of changing state 
patterns in rs-fMRI.  
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