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Introduction

We present a unified image processing and analysis
framework for cortical thickness in characterizing
a clinical population. Due to the convoluted non-
Euclidean surface geometry, data smoothing and
analysis on the cortex are inherently difficult. When
measurements lie on a curved surface, it is natu-
ral to assign kernel smoothing weights based on the
geodesic distance along the surface rather than the
Euclidean distance. We present a new data smooth-
ing framework that addresses this problem implic-
itly without computing the geodesic distance.

Cortical thickness

The two surfaces that bound the gray matter in the
human brain are extracted from magnetic resonance
images (MRI). The distance between the two sur-
faces is usually referred as thecortical thickness
(Figure 1). The details of extracting the cortical sur-
faces can be found in [2, 3, 4].

Figure 1: Left: part of the cortex showing the outer and inner
surface that bound gray matter. Right: enlargement of the
boxed region. The cortical thickness measures the distance

between outer and inner surfaces.

Surface registration

Figure 2: Demonstration of surface registration.
Automatically generated traces of the central and superior

temporal sulcal fundi are normalized on the unit sphere [2].
The first column shows the traces generated for the template
surface. The second column shows the probability of sulcal
matching based on 149 normal subjects before any surface

normalization. The third column shows the probability after
surface normalization.

Spatial normalization of the surfaces is necessary
to facilitate vertex-by-vertex inter-subject thickness
comparison. The surface deformation field from
one surface to the template surface is obtained by
minimizing an objective function that measures the
global fit of two surfaces, while maximizing the
smoothness of the deformation in such a way that
the pattern of gyral ridges are matched smoothly.
The detail can be found in [2].

Heat kernel smoothing

Figure 3: Top: Heat kernel smoothing of cortical thickness
with σ = 1 andk = 20, 100, 200 iterations. Bottom: Heat

kernel smoothing on simulated data withσ = 1 and
k = 20, 200, 5000 iterations.

The cortical thickness measurements are always
contaminated with noise. In order to increase the
signal-to-noise ratio, new surface-based smoothing
calledheat kernel smoothingis developed [2]. Ob-
servationsY measured on the cortex∂Ω is assumed
to follow the additive model of true signalθ plus
noiseε:

Y (p) = θ(p) + ε(p), p ∈ ∂Ω.

Then we estimateθ usingheat kernel smoothing:

θ̂(p) = Kσ ∗ Y (p) =

∫

∂Ω
Kσ(p, q)Y (q) dµ(q),

whereµ(q) is the surface measure andKσ is the heat
kernel with bandwidthσ [2]. This is a more efficient
technique thandiffusion smoothing[1, 3, 4]. In the
diffusion smoothing formulation, the isotropic dif-
fusion equation

∂f

∂t
= ∇f, f (p, 0) = Y (p)

is solved via the finite element method on the cor-
tex [3, 4]. Kσ ∗ Y is the solution of the diffusion
equation after timet = σ2/2.
For smallσ we approximateKσ by theparametrix
expansion[5]:

Kσ(p, q) =
1

(2πσ)1/2
e−

d2(p,q)

2σ2
[
u0(p, q) + O(σ2)

]
,

whered(p, q) is the geodesic distance betweenx and
y andu0(p, q) → 1 asp → q.

For largeσ, the smoothing is performed by itera-
tively with a smaller bandwidth:

K√
kσ
∗ Y = Kσ ∗ · · · ∗Kσ︸ ︷︷ ︸

k times

∗Y.

The MATLAB implementation can be found in
http://www.stat.wisc.edu/
∼mchung/hk/hk.html.

Statistical inference on manifolds

As an illustration, we have applied the method in
detecting the regions of abnormal cortical thickness
in 16 high functioning autistic children. We set up
a general linear model (GLM) on cortical thickness
Yj for subjectj:

Kσ ∗ Yj(p) = λ1(p) + λ2(p) · agej

+λ3(p) · volumej + β(p) · groupj + εj,

wheregroupj is 1 for an autistic subject and0 for
a normal subject.volumej is the total gray matter
volume andagej is the age. Then we test the group
difference by performing a hypothesis testing:

H0 : β(p) = 0 for all p ∈ ∂Ω

v.s.
H1 : β(p) 6= 0 for somep ∈ ∂Ω.

Based onF random fieldF (p), the test statistic
supp∈∂Ω F (p) is used to compute thep-value cor-
responding to the above multiple hypotheses.

Figure 4: Correctedp value maps ofF -test removing the
effect of age and relative gray matter volume difference
projected onto the average outer (top) and inner surfaces

(bottom). It shows relatively asymmetric thickness difference
between two groups.
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