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Introduction

We present a unified image processing and anal
framework for cortical thickness in characterizi

a clinical population. Due to the convoluted nopminimizing an objective function that measures t
Euclidean surface geometry, data smoothing argiobal fit of two surfaces, while maximizing t

analysis on the cortex are inherently difficult. Wh
measurements lie on a curved surface, It IS Nna
ral to assign kernel smoothing weights based on
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¢one surface to the template surface Is obtained

Spatial normalization of the surfaces is necesdaBRor larges, the smoothing is performed by itera-

|

to facilitate vertex-by-vertex inter-subject thicknegssively with a smaller bandwidth:
ysemparison. The surface deformation field fr

m

by
he

K\/EU*Y:KO*"'*K@*Y-
k times

sigmoothness of the deformation in such a way

tHde detail can be found in [2].

geodesic distance along the surface rather than
Euclidean distance. We present a new data sm
Ing framework that addresses this problem Iim
itly without computing the geodesic distance.

P

Cortical thickness

The two surfaces that bound the gray matter in

human brain are extracted from magnetic resong
Images (MRI). The distance between the two su
faces iIs usually referred as tloertical thickness
(Figure 1). The details of extracting the cortical st
faces can be found in [2, 3, 4].

Figure 1. Left: part of the cortex showing the outer and inn
surface that bound gray matter. Right: enlargement of th
boxed region. The cortical thickness measures the distar

between outer and inner surfaces.

Surface registration
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Figure 2: Demonstration of surface registration.

Automatically generated traces of the central and superipr€XPansioris].
I

temporal sulcal fundi are normalized on the unit sphere [4
The first column shows the traces generated for the temp
surface. The second column shows the probability of sulc
matching based on 149 normal subjects before any surfg

normalization. The third column shows the probability after

PHeat kernel smoothing
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Figure 3: Top: Heat kernel smoothing of cortical thicknes
with o = 1 andk = 20, 100, 200 iterations. Bottom: Heat
kernel smoothing on simulated data with= 1 and
k = 20, 200, 5000 iterations.
The cortical thickness measurements are alw

contaminated with noise. In order to Increase

€calledheat kernel smoothing developed [2]. Ob-

igervationéf measured on the cortéX? is assumed
fo follow the additive model of true signadl plus
NOISEc:

Y(p) = 0(p) +€(p),p € 0L
Then we estimaté usingheat kernel smoothing

Kqs(p, @)Y (q) du(q),
o9

whereu(q) is the surface measure ahAg is the heat
kernel with bandwidtla [2]. This is a more efficient
technique thamiffusion smoothingl, 3, 4]. In the

AN

O(p) = Ko xY(p) =

fusion equation

0f _

o VI f(p,0)=Y(p)

IS solved via the finite element method on the ¢
tex [3, 4]. K, * Y Is the solution of the diffusion
equation after time = o2/2.

For smallo we approximates, by the parametrix

1
(&
(2mo)l/2
(p, q) is the geodesic distance betweeand

ate Ks(p,q) = [uo(p, q) + 0(02)} :

al

C@vhered

r:)E
tthe pattern of gyral ridges are matched smoothl

signal-to-noise ratio, new surface-based smooth

diffusion smoothing formulation, the isotropic dif

DI-

The MATLAB implementation can be found in
Attp:/mvww. stat.wisc.edu/
¥omchung/hk/hk.html.

Statistical inference on manifolds

As an illustration, we have applied the method in
detecting the regions of abnormal cortical thickness
In 16 high functioning autistic children. We set up
a general linear model (GLM) on cortical thickness
Y; for subjecty:

Ko *Yj(p) = A1lp) + A2(p) - age;
+A3(p) - volume; + (3(p) - group; + €;,

wheregroup; Is 1 for an autistic subject ardfor

a normal subjectvolume; Is the total gray matter
volume andagej IS the age. Then we test the group
difference by performing a hypothesis testing:

5 Hy : B(p) =0forall p € 01

V.S.
Hi : B(p) # 0 for somep € 0X..

;é%sed onf random field F’

- SU

i

(p), the test statistic
Ppeon F(p) is used to compute thg-value cor-
sponding to the above multiple hypotheses.

Figure 4: Correcteg value maps of'-test removing the

effect of age and relative gray matter volume difference

projected onto the average outer (top) and inner surfaces
(bottom). It shows relatively asymmetric thickness difference
between two groups.
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