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ABSTRACT map and warp volume measures to a cortical surface mesh. If

. . . . one wishes to warp surface measures such as cortical thick-
Various cortical measures such as cortical thickness are ro .
ness to the 3D volume space, one has to interpolate voxels

tinely computed along the vertices of cortical surface mesh .
. . . that the mesh vertices do not pass through.
These metrics are used in surface-based morphometric stud- : L .
In this paper, we present a new explicit functional rep-

les. I one wishes to compare the surface-based morphoésentation technique to address the problem of resamplin
metric studies to 3D volume-based studies at a voxel Iever q P pling

3D interpolation of the sparsely sampled 2D cortical data issparsely sampleq cort|call data to a densely defl_ned vqumg
. space. The cortical data is represented as the linear combi-
needed. In this paper, we have developed a new computa*

. - ) nation of basis functions, which are the eigenfunctionfief t
tional framework for explicitly representing sparsely sdea . : : .

. . L . . D Laplacian. The eigenfunctions are the product of spheri-
cortical data as a linear combination of eigenfunctions o

. . . cal harmonics and spherical Bessel functions. Our approach
the 3D Laplacian. The eigenfunctions are expressed as th o ; . X

: . . should offer more unified modeling flexibility than widely
product of spherical Bessel functions and spherical harmon : X : .
: - ; . . used radial basis approaches [4] [8] since each basis has the
ics. The coefficients of the expansion are estimated in the

o : . . Identical mathematical form. On the other hand, the radial
least squares fashion iteratively by breaking the probtem i . . St
; basis method represent data as the linear combination of low
smaller subproblems to reduce a computational bottleneck.

degree polynomials and radically symmetric functions.
The eigenfunction expansion of cortical data is not a com-
1. INTRODUCTION putationally easy problem due to the large number of mesh
vertices upward of 700000. If one tries the traditional teas
Cortical surfaces have been characterized by various geomequares estimation [10] [14], one encounters a serious com-
ric measures such as cortical thickness [5] [7], curvat[Bes pytational bottleneck of solving 700000 linear equations s
[12] and area elements [6]. These measures are computggljitaneously. Using the recently develojitedative residual
along the vertices of cortical surface meshes. After sarfacmting algorithm [5], we reduce the computational burden to
normalization, these measures are feed into statistiadyan solving few equations at a time. Our framework is very gen-
sis pipelines. Surface specific analysis tend to sensitize s gra) that it can be directly applicable to constructing thebp
face specific tissue change and has been used frequently dgjlity density function that describes water diffusioorfr

quantifying the amount and the shape of gray matter changgyltiple shell data without much modification in the frame-
The limitation of surface based approaches is the additiongyork [16] [17].

computational burden of segmenting gray matters accyratel
and obtaining cortical surfaces meshes.

On the other hand, the volume-based morphometric tech-
nigues such as the deformation-based morphometry [2] [%uppose the Cartesian coordinates, p», p3) are given by
or voxel-based morphometry [1] do not require the additionay, spherical coordinatés, 4, ¢) as
step of obtaining cortical surface meshes. If one tries to-co Y
pare or combine both surface- and volume-based measures, (p1, p2, p3) = (rsinf cos ¢, rsin @ sin @, r cos §), Q)
one has to transform the measurements |n.to a common space iere(d, o) € [0, 7][0, 2r). Define the spherical Laplacian
Since the voxel space is more densely defined than mesh ver- . 5

. o ) on the unit spheré= as
tices, it is easier to warp volume measures to a surface],In [5
the computation intensive nearest neighbor search afgorit 1 0 /. 0 0 1 02
S v— — 5 - -
sin? 6 Op?

00
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[9] on an optimized k-D tree is used to compute the distance 527 5ne oo
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‘ ’ L o - N i Fig. 2. Left: the cortical thickness defined on mesh vertices
' - », are rounded to the closest voxel. Right: Eigenfunction ex-
‘. .’ pansion with degree 22 and 22 roots. Only the masked brain
‘ ‘ I T : region is shown. The representation can fill out voxels where
- - cortical thickness is not defined.
Zipp Zips explicit form for spherical harmonics is given in [5]. The

eigenvalues arg;,, = I(l+ 1) forl =0,1,2,---. The first

. . . ) ) ) equation can be written as
Fig. 1. Basis functionsZ;,,, are visualized in the cube

[-1,1]3. The images are the cross sectiongat= 0 The r2g" + 2rg + [r 2\ — I(14+1)]g = 0. (5)
expansion is only valid within the ball of radius 1. The in-

dices 0fZ;,,.,, corresponds to the spherical harmoliig, and  If we define a new variablg = »—'/2G, we can transform
the n-th root of the spherical Bessel functidh. The index the equation to
n basically relates to the scale of the patt&f in the radial

direction. r2G" 4+ rG + [rPX — (1 + %)Q]G =0.

The Laplacian in the solid bal1 of radius 1 is then defined This is the scaled version of the Bessel equation and the only

as bounded solution at the origin is given in terms of the Bessel
92 20 1 function of the firstkind a&(r) = J, 1 (v/\r). The solution

Am= a2 T rar T _A52 to (5) is given by ’
using the spherical coordinates ¢, ¢). Consider the eigen- B
value problem g(r) =2 (VAr) o SV, ©6)
Amf+Af=0 2) whereJlJr 1 is the Bessel function of the first. The solution is

proportlonal to the spherical Bessel functisindefined as
in the solid ball of radius 1. We may assume the additional

Dirichlet boundary condition T
Y Si@) = /5= Jiv1(a).
f(r=1,0,0)=0 3)
I . The first t fth herical B | function i
Substituting the separable solution of the form € firstterm orthe spherical Besset unction 1S
sin x
F(r,0,) = g(r)h(0, ¢). So(w) = —=.
in (2), we obtain Other terms are obtained recursively from
r2 9 2 AS2h
bl 2y = !
gt oo Siii(@) = =S{(@) + =Si(@).
for some constani.
We first solve for the second equation Few other terms are
cosr sinx
Agzh+ ph=0. @) Sile) ===+ 5
The solutions to (4) are the spherical harmoriigs, where sinz  3cosr 3sinz
I andm are called the degree and the order respectively. The Sa(x) = - + .

T 2 3



by solving the system of linear equations [5] [10] [14]. For a
cortical surface mesh withy vertices, we need to simultane-
ously solveN linear equations and, in turn, invert ah x N
matrix. For cortical surface meshey, can easily reach up
more than 700000 and it will not fit most computer memories.
To address this computational bottleneck, we have devdlope
theiterative residual fittingalgorithm [5] that divide the ex-
tremely large linear problem into manageable small sulfset o
linear problems.

Letp; = (ri,0;, p;) be the mesh vertices where the corti-

Fig. 3. (a) Cortical thickness usually ranges from 2 to 6 mm.cal measurementéare given. We vectorize the measurement
(b) Eigenfunction expansion with degrée= 22 andj = 5 @S

number of roots. (c) Eigenfunction expansion with= 10 f=(f(p1), -, flpn))’

andj = 22. LetZ;.,, be theN x (21 + 1) submatrix of basis given by
. . . Z1_in AR

In the computer implementation of the spherical Besselfunc b l’_ (p1) b _ (p1)

tion, one may need to defing (0). However, the built-in Zy. = : . :

spherical Bessel functions in most computer programs such Zi—1n(pN) o Ziin(pN)

as MATLAB cause the singularity at = 0. Hence we need . ) )
to defines; (0) explicitly. Using the I'Hospital’s rule, we have Denote the matrix of all basis corresponding toithle degree

So(0) = 1 andS;(0) = 0. Then using the I'Hospital’s rule SZ: = [Zi.1,-- -, Z,. ;]. Define the vector of coefficients
iteratively, we have corresponding t&; as
lin% Sit1(z) = — lirr%)S’l'(x) +1 lin% S/(z) =0fori > 1. Br=Br—11, Brig)

Since the solution should satisfy the boundary condition’ hén we iteratively estimate the coefficients of low degtees
(3), we should have;(v/X) = 0. We order the roots of the high degrees using the iterative algorithm.
spherical Bessel function as

0 < VA1 <V A </ Asz<---.

Algorithm 1 Iterative Residual Fitting.

1.1<0.
For the0-th degree, the roots are trivially given g8\, =
nm. All higher roots are numerically estimated. 2.r —f.

Multiplying the spherical Bessel functions and the spher- 3 7 7 \-lg1 ¢
ical harmonics together, the eigenfunctions to (2) are then - Fo — (ZoZo)™ Zof.
given by 4.1 —1+1.

Zlmn('r; 95 90) = Sl( V AlnT)}/lm(oy <P) 5,r«—r— Zlflﬂlfl.
Figure 1 shows the representative basis sampled in the cube 6. 3, — (Z,Z,)"Z/r.

[—1,1]? at the cross sectiop, = 0. These eigenfunctions
from a basis within a solid sphere of radius 1. Then any func-
tion f € L?(M), the space of square integrable functions;
can be expanded as

7. Ifl <k, goto Step 4.

! 4. 3D RESAMPLING OF 2D CORTICAL DATA

k J
J(r.0.9) ~ ; m;l 7; BurnZimn (7 8, )- Among various cortical measures, we have used the cortical
thickness to demonstrate the proposed method. High reso-
The expansion is truncated at the degreek and withn = j  |ution magnetic resonance images were obtained using a 3-
roots. Tesla GE SIGNA scanner. The collected images went through
intensity nonuniformity correction [15]. A supervised Reu

3. ITERATIVE RESIDUAL FITTING ALGORITHM ral network classifier was used for tissue segmentation [11]
Subsequently a deformable surface algorithm was used to ob-

Previously the coefficients of spherical harmonic series extain both the inner and the outer cortical surfaces that doun

pansion have been estimated using the least squares mettgrdy matter [13]. The cortical thickness is then defined as th
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