| ntroduction

We present a new explicit functional representation te

ume space. The cortical data is represented as the |i

Our approach should offer more unified modeling fle
bility than widely used radial basis approaches [1].
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Figure 1: Basis functionZ,,,, are visualized in the cube-1,1]°
at the cross sectiop, = 0. The expansion is only valid within the

ball of radius 1.Z,,,, are the multiples of spherical harmonics and

spherical Bessel functions

Eigenfunction Expansion

Suppose the Cartesian coordinates p2,p3) are given
by the spherical coordinatés, 0, ¢) as

(p1,P2,P3) = (rSiNOcose, rsind sing, rcosd ).
Consider the eigenvalue problem
Af+Af=0

In the solid ball of radius 1 with the Dirichlet boundal
condition

f(r=1,0,¢) =0.

ch-
nique to address the problem of resampling sparsebhereY,,, are the spherical harmonics of degieand

sampled 2D cortical data to a densely defined 3D Vobrder m [2], and S, are the spherical Bessel functign_et 7, ., be theN x (21 -+ 1) submatrix of basis:

NEEgure 1). The roots of the spherical Bessel functis
combination of the eigenfunctions of the 3D Laplacian.e. S,(x) = 0, are ordered as
XI-

Fyting algorithm [2] that divide s the extremely large line
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The eigenfunctions of the 3D Laplacian are given by
Z[mn(r,e,([)) :Sl( )\InT)Ylm(e>(p)>

M1 < VA< VA<,

Then any square integrable function can be expande

0<

k 1 j
f(T,@,(p) ~ > > > ﬁlmnzlmn(r>e>(p)>

1=0 m=—1n=1
where the degrek and the number of roofshave to be
given a priori.

Figure 2: Left: 2D cortical thickness defined on mesh vestiae
resampled on 3D voxel space. Right: Eigenfunction expansid
with degree k= 22 and j=22 roots. Only the masked brain regio

shown. The representation can fill out voxels smoothly wherg

cortical thickness is not defined.

|terative Residual Fitting Algorithm

Previously the coefficients of spherical harmonic serie

expansion have been estimated using the least sq(
method by solving the system of linear equations [2] |
For a cortical surface mesh with vertices, wher@ can
reach upwards of 400000 for cortical meshes, we n
to simultaneously solve fdX equations and, in turn, in
vert anN x N matrix. To address this computation
bottleneck, we have developed tiberative residual fit-

DN,

Letp; = (ri,0;, @) be the mesh vertices. We vectori
the measurement as

f= (f(p1)>>f(pN))/

 Ziin(p1) 0 Zuin(pr) |

l,-n —

Zian(PN) o Zia(pN)

d2enote the matrix of all basis corresponding to the
th degree a¥, = [Z; .1, --,Z;.;]. Define the vector of
coefficients corresponding & as

Br=(P1—t1,, B

Then we iteratively estimate the coefficients of low de-

grees to high degrees using the iterative algorithm:

1.1+ 0.

2.r —f.

3.B0 « (ZoZo)'Z{f.
4.1 1+1.

S.r —r—2Z1_1B1-1.
6.8 (Z1Z1)'Z]r.
7.1f1 <Xk, goto Step 4.

5=
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31:igure 3: (a) Cortical thickness usually ranges from 2 to 6.r{oh
Eigenfunction expansion with degrke= 22 andj = 5 number of
eed roots. (c) Eigenfunction expansion wikh= 10 andj = 22.

B3p Resampling of 2D Cortical Data

aiHigh resolution magnetic resonance images were |0b

ydhrough a sequence of image processing steps to obte
cortical thickness defined on mesh vertices [4] (Figure
2 and 3). We have scaled the mesh coordinates to
contained in the ball of radius 1. Then we have per
formed the eigenfunction expansion. As the degree an
the number of roots increases, the expansion should |
able to represent more detailed cortical pattern. Takin
the given cortical thickness as the ground truth, we hav
computed the average relative error (Figure 4).
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Figure 4: Relative error plot of eigenfunction expansion fo
various number of degrees and roots. Yellow dots are thessiwo
varying number of degrees for the fixed number of rgetss.
Red (blue) dots are the errors for varying number of roothet t
fixed degreék = 20 (10). The plots show that increasing the
number of degrees and roots also increases the accuracy.
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