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Abstract. Although there are numerous publications on amygdala vol-
umetry, so far there has not been many studies on modeling local amyg-
dala surface shape variations in a rigorous framework. This paper present
a systematic framework for modeling local amygdala shape. Using a
novel surface flattening technique, we obtain a smooth mapping from
the amygdala surface to a sphere. Then taking the spherical coordinates
as a reference frame, amygdala surfaces are parameterized as a weighted
linear combination of smooth basis functions using the recently devel-
oped weighted spherical harmonic representation. This new representa-
tion is used for parameterizing, smoothing and nonlinearly registering
a group of amygdala surfaces. The methodology has been applied in
detecting abnormal local shape variations in 23 autistic subjects com-
pared against 24 normal controls. We did not detect any statistically
significant abnormal amygdala shape variations in autistic subjects. The
complete amygdala surface modeling codes used in this study is available
at http://www.stat.wisc.edu/∼mchung/research/amygdala.

1 Introduction

Amygdala is an important brain substructure that has been implicated in ab-
normal functional impairment in autism [7] [14]. Since the abnormal structure
might be the cause of the functional impairment, there have been many studies
on amygdala volumetry in autism. However, most amygdala volumetry results
are somewhat inconsistent [2] [16] [10] [14]. The previous studies traced the
amygdalae manually and by counting the number of voxels within the region of
interest (ROI), the total volume of the amygdalae were estimated. The limita-
tion of the traditional ROI-based volumetry is that it can not determine if the
volume difference is spread all over the ROI or localized within specific regions
of the ROI.

In this paper, we present a new framework for addressing the problem of
local amygdala shape analysis using the recently developed weighted spherical
harmonic representation [5]. The weighted spherical harmonic representation

T. Dohi, I. Sakuma, and H. Liao (Eds.): MIAR 2008, LNCS 5128, pp. 177–184, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



178 M.K. Chung et al.

Fig. 1. The diffusion equation with a heat source (amygdala) and a heat sink (enclosing
sphere). After sufficient number of iterations, the equilibrium state is reached. By
tracing the geodesic path from the heat source to the heat sink using the geodesic
contour, we obtain a smooth spherical mapping.

formulates surface parameterization, filtering and nonlinear surface registration
in a unified Hilbert space framework. Since the proposed method requires a
surface flattening to a sphere, we have developed a new and very fast sur-
face flattening technique based on the equilibrium state of heat diffusion. By
tracing the geodesic path of heat equilibrium state from a heat source (amyg-
dala) to a heat sink (sphere), we obtain a smooth spherical mapping. Solving
an isotropic heat equation in a 3D image volume is computationally trivial,
so our proposed method offers a much simpler numerical implementation than
previous surface flattening techniques such as conformal mappings [1] [9] [11],
quasi-isometric mappings [17] and area preserving mappings [4]. These flattening
methods are not trivial to implement and computationally insensitive. Once we
obtain the weighted spherical harmonic representation of amygdalae, the group
difference between 23 autistic and 24 control subjects is statistically tested using
the Hotelling’s T 2 statistic on the estimated surface coordinates.

2 Methods

High resolution anatomical magnetic resonance images (MRI) were obtained us-
ing a 3-Tesla GE SIGNA scanner with a quadrature head coil. Details on image
acquisition parameters are given in [14]. MRIs are reoriented to the pathological
plane [6] for optimal comparison with anatomical atlases. Manual segmentation
was done by an expert and the reliability of the manual segmentation was val-
idated by two raters on 10 amygdale resulting in interclass correlation of 0.95
and the intersection over the union of 0.84 [14]. Once binary segmentation is
obtained, the marching cubes algorithm was used to extract the boundary of
amygdale. Afterwards, we we flattened the amaygada surfaces using the pro-
posed method.
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2.1 Surface Flattening Via Diffusion

Given an amygdala binary segmentation Ma, we put a larger sphere Ms that
encloses the amygala (Figure 1 left). The amygdala is assigned the value 1 while
the enclosing sphere is assigned the value -1, i.e.

f(Ma, σ) = 1 and f(Ms, σ) = −1

for all σ. The parameter σ denotes the diffusion time. The amygdala and the
sphere serve as a heat source and a heat sink respectively. Then we solve an
isotropic diffusion equation

∂f

∂σ
= Δf (1)

with the given boundary condition. Δ is the 3D Laplacian. After sufficiently
enough time, the solution reaches the heat equilibrium state where the additional
diffusion does not make any change in the heat distribution (Figure 1 middle).
The heat equilibrium state can be also obtained by letting ∂f

∂σ = 0 and solving
for the Laplace equation

Δf = 0

with the same boundary condition. The resulting equilibrium state is given in
Figure 1 (middle).

Once we obtained the equilibrium state, we trace the geodesic path from the
heat source to the heat sink for every mesh vertices on the isosurface of the
amygdala. The trajectory of the geodesic path provides a smooth mapping from
the amygdala surface to the sphere. The geodesic path can be traced by follow-
ing the gradient of the equilibrium state but this requires solving an additional
system of differential equations. So we have avoided using the equilibrium gra-
dient. Instead we have constructed numerous geodesic contours that correspond
to the level set of the equilibrium state (Figure 1 right). Then the geodesic path
is constructed by finding the shortest distance from one contour to the next and
connecting them together. This is done in an iterative fashion as shown in Figure
2, where five contours corresponding to the values 0.6, 0.2, -0.2, -0.6, -1.0 are
used to flatten the amygdala surface. Once we obtained the spherical mapping,
we can project the Euler angles (θ, ϕ) onto the amygdala surface (Figure 3)
and the Euler angles serve as the underlying parameterization for the weighted
spherical harmonic modeling.

2.2 Weighted Spherical Harmonics

Since the technical detail and numerical implementation for the weighted spher-
ical harmonic modeling is given in [5], we will only briefly describe the basic
idea here. The weighted spherical harmonic representation fixes the Gibbs phe-
nomenon (ringing effects) associated with the traditional Fourier descriptors and
spherical harmonic representation [4] [8] [9] [12] [15] by weighting the series ex-
pansion with exponential weights. The exponential weights make the representa-
tion converges faster and reduces the amount of wiggling. If surface coordinates
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Fig. 2. Amygala surface flattening process following the geodesic path of the equilib-
rium state of heat diffusion. The numbers corresponds to the geodesic contours. For
simple shapes like amygda, 5 to 10 contours are sufficient for tracing the geodesic path.

are abruptly changing or their derivatives are discontinuous, the Gibbs phe-
nomenon will severely distort the surface shape as shown in Figure 4, where a
cube is reconstructed with both the traditional (k = 42, σ = 0) and the new
weighted spherical harmonics (k = 42, σ = 0.001). The weighted version has less
ringing effects.

From the surface flattening, the mesh coordinates for the amygdala surface
∂Ma can be parameterized by the Euler angles θ ∈ [0, π], ϕ ∈ [0, 2π) associated
with the unit sphere as

p(θ, ϕ) = (p1(θ, ϕ), p2(θ, ϕ), p2(θ, ϕ))′.

See Figure 3 for how the Euler angles are used to parameterize the amygdala
surface. The weighted spherical harmonic representation of the coordinates is
then given by

p(θ, ϕ) =
k∑

l=0

l∑

m=−l

e−l(l+1)σflmYlm(θ, ϕ),

where

flm =
∫ π

θ=0

∫ 2π

ϕ=0
p(θ, ϕ)Ylm(θ, ϕ) sin θdθdϕ.

are the Fourier coefficient vectors and Ylm are spherical harmonics of degree
l and order m. The coefficients flm are estimated by one degree at a time
in the least squares fashion using the recently developed iterative residual fit-
ting algorithm. We have used the 15-th degree representation for this study
(Figure 5).

Once amgydala surfaces are represented with the weighted spherical harmon-
ics, the spherical harmonic correspondence can be used to nonlinearly align all
47 amygdale surfaces. The technical details on the spherical harmonic corre-
spondence is given in [5]. The average left and right amygdala templates are
constructed by averaging the Fourier coefficients of all 24 control subjects. The
smooth surfaces in Figure 6 are the constructed average templates. The tem-
plate surfaces serve as the reference coordinates for projecting the subsequent
statistical parametric maps.
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Fig. 3. Amygdala surface parameterization using the Euler angles (θ, ϕ). The point
θ = 0 corresponds to the north pole of a unit sphere. The parameterization is needed
for the weighted spherical harmonic modeling.

2.3 Comparing Two Groups of Surfaces

Let i be the group index and j be the subject index. Let ni be the sample size in
the i-th group. For convenience, let the first group to be normal controls (n1 =
24) and the second group to be autistic (n2 = 23). We propose the following
stochastic model on the weighted spherical harmonics. For surface coordinates
pij = (p1

ij , p
2
ij , p

3
ij)

′, we model

pij(θ, ϕ) =
k∑

l=0

l∑

m=−l

e−l(l+1)σμij
lmYlm(θ, ϕ) + Σ1/2(θ, ϕ)εij(θ, ϕ),

where μij
lm are unknown Fourier coefficient vectors, Σ is the covariance matrix,

which allows the spatial dependence among pi1, pi2, pi3, and εij are independent
and identically distributed Gaussian random vector field. A similar stochastic
modeling approach has been used in [13] where the canonical expansion of a
Gaussian random field is used to model deformation vector fields. Then we test
the following null H0 and alternate H1 hypotheses:

H0 :
k∑

l=0

l∑

m=−l

e−l(l+1)σμ1j
lmYlm(θ, ϕ) =

k∑

l=0

l∑

m=−l

e−l(l+1)σμ2j
lmYlm(θ, ϕ)

vs.

H1 :
k∑

l=0

l∑

m=−l

e−l(l+1)σμ1j
lmYlm(θ, ϕ) �=

k∑

l=0

l∑

m=−l

e−l(l+1)σμ2j
lmYlm(θ, ϕ).

The unknown group mean for the i-th group is estimated by

p̄i =
1
ni

ni∑

j=1

pij .

The group mean difference vector p̄2 − p̄1 is shown as white arrows in Figure 6.
The group difference is only shown in the regions with P -value < 0.01 for better
visualization. The direction of white arrows is where the mean control surface
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Fig. 4. The severe Gibbs phenomenon shown in the traditional spherical harmonic
model of a cube (σ = 0) for degrees k = 42, 78. The weighted versions can reduce the
Gibbs phenomenon in the representation by introducing small weights corresponding
to σ = 0.001, 0.0001.

Fig. 5. The spherical harmonic modeling of a left amygdala surface with various de-
grees. We have chosen degree 15 representation in this study.

should be moved to match with the mean amygdala surface. The significance of
the group difference can be tested using the Hotelling’s T 2 statistic given by

H(θ, ϕ) =
n1n2(n1 + n2 − 4)

3(n1 + n2)(n1 + n2 − 2)
(p̄2 − p̄1)′Σ̂−1(p̄2 − p̄1),

where

Σ̂ =
1

n1 + n2 − 2

[ n1∑

j=1

(p1j − p̄1)(p1j − p̄1)′ +
n2∑

j=1

(p2j − p̄1)(p2j − p̄2)′
]
.

H(θ, ϕ) is distributed as a F -statistic with 3 and n1 +n2 −4 degrees of freedom.

3 Results

The volumes for control subjects (n1 = 24) are left 1883±176mm3, right 1874±
172mm3. The volumes for autistic subjects (n2 = 23) are left 1859 ± 182mm3,
right 1862 ± 181mm3. The volume difference between the groups are not statis-
tically significant (P -value = 0.64 for left and 0.81 for right).

From the ROI-based volumetry, it is not clear if the local shape difference is
still present within amygdala. So we have performed the Hotelling’s T 2 test the
average surface template at each mesh vertex. The resulting P -value is given in
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Fig. 6. The P -value of Hotelling’s T 2 statistic projected onto the average amydala
template constructed from 24 control subjects. The white arrows show the direction
where the average control surface should move to match the average autistic surface.

Figure 6. The minimum P -value is 0.03 for both the left and the right amygdale.
Although, at a fixed point, this is sufficiently low P -value to be taken as a
significant signal, the result will not pass the multiple comparison correction
based on the random field theory [18] or false discovery rate (FDR) [3]. So we
conclude that there is no abnormal local amygdala shape difference in autism.

4 Conclusions

The paper developed a unified framework for quantifying a population of amyg-
dala surfaces. Our main contribution is the new amygdala surface flattening
technique that utilizes the idea of the geodesic path of heat equilibrium. The
proposed flattening technique is simple enough to be applied to various applica-
tions. Using the spherical mapping established from the new flattening technique,
we have applied the recently developed weighted spherical harmonic represen-
tation to parameterize, to register amygdala surfaces, and to detect local shape
difference. We found no statistically significant local amygdala shape difference
between autism and control. The complete compute codes used for this study is
available at http://www.stat.wisc.edu/∼mchung/research/amygdala.
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