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Abstract

We present a new tensor-based morphometric framework
that quantifies cortical shape variations using the local area
element. The local area element is obtained from the Rie-
mannian metric tensors, which are, in turn, obtained from
the smooth functional parametrization of a triangle mesh.
For the smooth parametrization, we have developed a novel
weighted spherical harmonic (SPHARM) representation.
The weighted-SPHARM differs from the classical SPHARM
in a regularizing cost function. The classical SPHARM is a
special case of the weighted-SPHARM. Further, for a spe-
cific choice of weights, the weighted-SPHARM is shown to
be the finite least squares approximation to the solution of
an isotropic heat diffusion on a unit sphere. The main aims
of this paper are to present a theoretical framework for the
weighted-SPHARM, and to show how it can be used in the
tensor-based morphometry. As an illustration, the method-
ology has been applied in the problem of detecting abnor-
mal cortical regions in a clinical population.

1. Introduction

In many previous cortical morphometric studies, cortical
thickness have been mainly used to quantify cortical shape
variations in a population [11, 13, 14]. The cortical thick-
ness measures the amount of gray matter in the vertical di-
rection on the cortex. We present a new tensor-based mor-
phometry (TBM) that quantifies the amount of gray matter
along the tangential direction of the cortex by computing the
local area element. The local area element is obtained from
the Riemannian metric tensors, which are computed from
the smooth functional parametrization of a cortical mesh.

For this purpose, we present a novel weighted spherical
harmonic (SPHARM) representation that differs from the
classical SPHARM [8, 17] in a regularizing cost function.
Unlike the classical SPHARM, we weigh measurements in
such a way that the closer measurements are weighed more.
The weighted-SPHARM is mathematically related to both
the classical SPHARM and an isotropic heat diffusion on a
unit spher.

Let us overview previous literatures that are related to
our study. Gerig et al. (2001) used the mean squared dis-
tance (MSD) of SPHARM coefficients in quantifying ven-
tricle surface shape in a twin study [8]. The distance based
metrics widely used in deformation-based morphometry do
not directly quantify the amount of tissue growth and atro-
phy [2]. For directly measuring the amount of tissue vol-
ume, the Jacobian determinant of the deformation field is a
better metric [2]. Our local area element is the differential
geometric generalization of the Jacobian determinant. So
the area element will be able to quantify the cortical tissue
growth/atrophy directly.

Shen et al. (2004) used the principal component analy-
sis technique on the SPHARM coefficients of schizophrenic
hippocampal surfaces in reducing the data dimension [17].
Then they classified the hippocampal surfaces using the lin-
ear discriminant analysis and a support vector machine. In
a related work, Gu et al. (2004) presented the SPHARM
representation as a surface compression technique, where
the main geometric feasures are encoded in the low degree
spherical harmonics, while the noises are in the high degree
spherical harmonics [9]. It will be shown that the weighted-
SPHARM penalizes high degree spherical harmonics more
than the classical SPHARM does.

Bulow (2004) used the spherical harmonics in develop-
ing an isotropic heat diffusion via the Fourier transform ona



unit sphere as a form of hierarchical surface representation
[1]. We will show that the weighted-SPHARM representa-
tion is related to the heat diffusion asymptotically.

Most SPHARM literatures [1, 8, 9, 17] use the both real-
and imaginary-valued spherical harmonics. However, the
coefficients of imaginary-valued spherical harmonic basis
do not serve any purpose in SPHARM representation other
than providing mathematical simplicity. In this paper, we
will use real-valued spherical harmonics with different nor-
malizing constants than [1, 8, 9, 17].

Once the differentiable parametrization of the cortex is
established by the weighted-SPHARM, we can compute
the Riemmanian metric tensors and local area element.
Many previous differential geometric cortical modeling is
based on locally fitting quadratic polynomials [5, 7]. The
SPHARM-based global parametrization tend to be compu-
tationally expensive compared to the local quadratic poly-
nomial fitting while providing more accuracy and flexibility
for hierarchical representation.

2. Preliminary

2.1. Parametrization

Let M andS2 be a cortical surface and a unit sphere
respectively.M andS2 are realized as meshes with more
than 80,000 triangle elements [13]. It is natural to assume
the cortical surface to be a smooth 2-dimensional Rieman-
nian manifold parameterized by two parameters [6]. This
parametrization is constructed in the following way. A point
p = (x, y, z) ∈ M is mapped ontou = (u1, u2, u3) ∈ S2

via a deformable surface algorithm that preserves anatom-
ical homology and the topological connectivity of meshes
(Figure1) [13]. Let U be the inverse mapping fromS2 to
M. Pointu = (u1, u2, u3) ∈ S2 is parameterized by the
spherical coordinates:

(u1, u2, u3) = (sin θ cosϕ, sin θ sin ϕ, cos θ)

with (θ, ϕ) ∈ N = [0, π] ⊗ [0, 2π). This mapping will be
denoted asX , i.e. X : N → S2. Then we have composite
mappingZ = U ◦ X : N → M. Z is a 3D vector and it
will be stochastically modeled as

Z(θ, ϕ) = ν(θ, ϕ) + ǫ(θ, ϕ), (1)

whereν is unknown true differentiable parametrization and
ǫ is a random vector field onS2. The computation of the
Riemannian metric tensors and the local area element re-
quire estimating differentiable functionν.

2.2. Spherical harmonic representation

The basis functions on the unit sphere are given as the
eigenfunctions satisfying∆f + λf = 0, where∆ is the

Figure 1. Cortical manifoldM (left) is mapped onto unit sphere
S2 (right) via a deformable surface algorithm that preserves
anatomical homology and surface topology [13]. For the visual-
ization purpose, the mean curvature was computed and segmented
to better represent sulci and gyri.
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There are2l+1 eigenfunctions, denoted asYlm(−l ≤ m ≤
l), corresponding to the same eigenvalueλ = l(l + 1). Ylm

is called thespherical harmonicof degreel and orderm
[4]. The explicit form of the2l + 1 spherical harmonics of
degreel are given as

Ylm =





clmP
|m|
l (cos θ) sin(|m|ϕ), −l ≤ m ≤ −1,

clm√
2
P 0

l (cos θ), m = 0,

clmP
|m|
l (cos θ) cos(|m|ϕ), 1 ≤ m ≤ l,

where clm =
√

2l+1
2π

(l−|m|)!
(l+|m|)! and Pm

l is the associated

Legendre polynomials of orderm. Unlike many previous
SPHARM literatures [1, 8, 9, 17] that used the complex-
valued spherical harmonics, we use only real-valued spher-
ical harmonics with different normalizing constants since
they are more convenient for a real-valued stochastic model
(1).

For f, h ∈ L2(S2), the space of square integrable func-
tions inS2, the inner product is defined as

〈f, h〉 =

∫ 2π

0

∫ π

0

f(θ, ϕ)h(θ, ϕ) dµ(θ, ϕ),

where Lebesgue measuredµ(θ, ϕ) = sin θdθdϕ. With re-
spect to this inner product, the spherical harmonics satisfies
the orthonormal condition

∫

S2

Yij(p)Ylm(p) dµ(p) = δilδjm,

whereδil is the Kroneker’s delta.



Consider subspace

Hk = {
k∑

l=0

l∑

m=−l

βiYlm : βi ∈ R} ⊂ L2(S2),

which is spanned by up to thek-th degree spherical har-
monics. Then the least squares estimation, denoted asf̂ , of
f ∈ L2(S2) in the subspaceHk is given by

f̂(p) =

k∑

l=0

l∑

m=−l

〈f, Ylm〉Ylm(p).

This can be stated as the following theorem.
Theorem 1.

k∑

l=0

l∑

m=−l

〈f, Ylm〉Ylm = arg min
h∈Hk

∫

S2

[
f(q)−h(q)

]2
dµ(q).

This theorem is a well known result in Fourier analysis and
mainly refered as the genearlized Fourier series expansion.
This is the basis of the classical-SPHARM representation
for anatomical boundaries [8, 9, 17].

3. Weighted-SPHARM

3.1. Basic theory.

The classical-SPHARM is only one possible represen-
tation of functional data measured on the unit sphere. We
will present a more general representation technique in the
framework of a local kernel regression [10]. We will call
this technique as theweighted-SPHARMsince the coeffi-
cients of SPHARM are additionally weighted by the eigen-
values of a kernel. It will be shown that the classical-
SPHARM is a special case of the more general weighted-
SPHARM representation.

First, we start with the spectral representation of positive
definite kernel inS2. Any positive definite kernelK(p, q)
in S2 can be represented as

K(p, q) =
∞∑

l=0

l∑

m=−l

λlmYlm(p)Ylm(q), (2)

where eigenvaluesλ00 ≥ λ1m1
≥ λ2m2

≥ · · · ≥ 0 satisfy
∫

S2

K(p, q)Ylm(q) dµ(q) = λlmYlm(p).

This is the special case of the Mercer’s theorem [4]. Without
loss of generality, we assume the kernel is normalized in
such a way that

∫

S2

K(p, q) dµ(q) = 1. (3)

Figure 2. The schematic comparison of the classical-SPHARM
and weighted-SPHARM. The classical approach estimates func-
tional dataf by minimizing the integrated squared distance be-
tweenf and smooth functionh. This distance is indicated by an
arrow. The weighted-SPHARM estimatesf locally at each fixedp
by minimizing the integrated weighted squared distance between
f and h(p). The weighted-SPHARM can be viewed as a local
kernel regression [10].

At each fixed pointp, smooth representationh of functional
dataf is searched in the subspaceHk that minimizes the
integral of the weighted squared distance betweenf andh.
This is formulated as the following minimization problem:

min
h∈Hk

∫

S2

K(p, q)
[
f(q) − h(p)

]2
dµ(q). (4)

See Figure2 for the schematic comparison of the classical
SPHARM and the weighed-SPHARM. The minimizer of
(4) is given by the following theorem.
Theorem 2.

k∑

l=0

l∑

m=−l

λlm〈f, Ylm〉Ylm

= arg min
h∈Hk

∫

S2

K(p, q)
[
f(q) − h(p)

]2
dµ(q).



Proof. Let

h(p) =

k∑

l=0

l∑

m=−l

βlmYlm(p) ∈ Hk.

The integral can be written as

I(β00, β1−1, β10, β11, · · · , βkk)

=

∫

S2

K(p, q)
[
f(q) −

k∑

l=0

l∑

m=−l

βlmYlm(p)
]2

dµ(q).

Since the functionalI is quadratic in coefficientsβlm, the
minimum exists and it is obtained when

∂I

∂βl′m′

= 0 for all l′ andm′. (5)

Then solving equation (5) with condition (3), we have

Yl′m′(p)

∫

S2

K(p, q)f(q) dµ(q) (6)

=

k∑

l=0

l∑

m=−l

βlmYlm(p)Yl′m′(p). (7)

Integrate the both sides of the equation with respect to mea-
sureµ(p). we obtain

βl′m′ =

∫

S2

f(q) dµ(q)

∫

S2

Yl′m′(p)K(p, q) dµ(p)

=
∞∑

l=0

l∑

m=−l

λlm

∫

S2

f(q)Ylm(q) dµ(q)

×
∫

S2

Ylm(p)Yl′m′(p) dµ(p)

= λlm

∫

S2

f(q)Yl′m′(q) dµ(q).

This proves the statement.
Now we show what happens as the dimension ofHk in-

creases. Define kernel smoothing as the integral convolu-
tion

K ∗ f(p) =

∫

S2

f(q)K(p, q) dµ(q). (8)

Then it can be shown that the weighted-SPHARM con-
verges to kernel smoothing (8) as the dimension of subspace
Hk increases. This can be stated differently as
Theorem 3.

K ∗ f(p) = arg min
h∈L2(S2)

∫

S2

K(p, q)
[
f(q) − h(p)

]2
dµ(q).

Figure 3. Top: the original inverse mappingU is displayed in
S2. It shows the coordinate functions projected ontoS2. Bottom:
the weighed-SPHARM representation of the coordinate functions.
The color scale for coordinates is thresholded at±45 mm to better
show the smoothing pattern of the weighted-SPHARM represen-
tation.

Proof. The weighted-SPHARM representation can be rear-
ranged as

k∑

l=0

l∑

m=−l

λlm〈f, Ylm〉Ylm(p)

=

∫

S2

f(q)
k∑

l=0

l∑

m=−l

λlmYlm(p)Ylm(q) dµ(q)

→
∫

S2

f(q)K(p, q) dµ(q) ask → ∞

The last line is from equation (2). On the other hand, from
the completeness of Hilbert spaceL2(S2),

lim
k→∞

arg min
h∈Hk

∫

S2

K(p, q)
[
f(q) − h(p)

]2
dµ(q)

= arg min
h∈L2(S2)

∫

S2

K(p, q)
[
f(q) − h(p)

]2
dµ(q).

This proves the statement. Theorem 3 connects the
weighted-SPHARM to kernel smoothing as the asymptotic
limit.

For the choice of eigenvaluesλlm = e−l(l+1)σ, the cor-
responding kernel is called theGauss-Weistrass kerneland
it will be denoted as

Kσ(p, q) =

∞∑

l=0

l∑

m=−l

e−l(l+1)σYlm(p)Ylm(q). (9)

The subscriptσ is introduced to indicate the dependence
of the additional parameter. Whenσ = 0, λlm = 1 and



the weighted-SPHARM becomes the classical-SPHARM.
It is interesting to note that even though the regularizing
cost functions are different in Theorem 1 and Theorem 2,
they are related. Another interesting property is thatKσ ∗ f

is the unique solution to the following isotropic diffusion
equation

∂g

∂σ
= ∆g, g(p, σ = 0) = f(p) (10)

[16]. From this property combined with Theorem 3, we
conclude that the weighted-SPHARM is the finite approxi-
mation of the isotropic diffusion inS2.

3.2. Numerical Implementation

We only need to numerically estimate the Fourier coef-
ficients〈f, Ylm〉 in the weighted-SPHARM. The eigenval-
uesλlm are given analytically from a given kernel. The
computation for the Fourier coefficients are based on the
direct numerical integration over high resolution triangle
meshes with more than 80,000 triangles and the average
inter-vertex distance of 0.0189 mm. The accuracy of the
weighed-SPAHRM is only restricted to the mesh resolu-
tion. Then the Fourier coefficients〈f, Ylm〉 is approximated
as the Riemann sum over triangle elements. The Riemann
sum based approximation should converge to the integral as
the mesh resolution increases. The weighted-SPHARM is
constructed by iteratively adding each term in Theorem 2.

We have compared the numerical results of the weighted-
SPHARM against the analytical solution of (10). Let f =
el′(l′+1)Yl′m′ be an analytic test function. ThenKσ ∗ f can
be written as

el′(l′+1)
∞∑

l=0

l∑

m=−l

e−l(l+1)σYlm(p)

∫

S2

Ylm(q)Yl′m′(q) dµ(q)

= el′(l′+1)
∞∑

l=0

l∑

m=−l

e−l(l+1)σYlm(p)δll′δmm′ = Yl′m′(p).

The table 1 shows the comparative result forl′ = 20 and
selectivem′ with σ = 0.01 and degreek = 20. The
third column shows the numerical computation of integral

l′ m′ integral difference
20 4 1.0001 9.7029 · 10−5

20 10 0.9999 1.6212 · 10−4

20 20 0.9999 −1.1174 · 10−4

Table 1. Numerical accuracy of the weighted-SPHARM withσ =
0.01 for degree 20, and order 4, 10 and 20. The third column
checks if〈Yl′m′ , Yl′m′〉 = 1. The last column shows the average
difference between the weighted-SPHARM and the expected heat
diffusion.

Figure 4. Riemannian metric tensor estimation. The metric tensors
gij are estimated by differentiating the weighted-SPHARM repre-
sentation. Afterwards the local area element

√
det g is computed.

The local area element measures the amount of are expansion and
shrinking with respect toS2.

∫
S2 Y 2

l′m′(p) dp = 1 showing the accuracy up to 3 deci-
mal places. This shows our Riemann sum approximation
provides sufficiently good accuracy, which depends on the
mesh resolution. The fourth column shows the average dif-
ference between the weighed-SPHARM and the isotropic
diffusion.

3.3. Riemannian metric tensor estimation

The weighted-SPHARM estimation̂ν of the unknown
true parametrizationν in equation (1) is given by

ν̂ =

k∑

l=0

l∑

m=−l

λlm〈Z, Ylm〉Ylm.

For this study, we used eigenvalues corresponding to the
Gauss-Weistrass kernel. Denoting partial differential oper-
ators as∂1 = ∂θ and∂2 = ∂ϕ, we have derivative estima-
tions

∂iν̂ =

k∑

l=0

l∑

m=−l

λlm〈Z, Ylm〉∂iYlm(θ, ϕ).

The partial derivatives of spherical harmonics are iteratively
computed. The associated Legendre polynomials in the
spherical harmonic basis are given by

Pm
l (cos θ) = sinm θ

dm

dxm
Pl(x)

∣∣∣
x=cos θ

,



Figure 5. Plot ofσ (horizontal) vs. FWHM (vertical) showing
the nonlinear functional relationship. Table 2. shows FWHMfor
differentσ.

where Pl(x) are the Legendre polynomials defined in
(−1, 1) with P0(x) = 1 and P1(x) = x. Then for
0 ≤ m ≤ l − 1,

∂θdPm
l (cos θ) = m sinm−1 θ cos θ

dm

dxm
Pl(x)

∣∣∣
x=cos θ

− sinm+1 θ
dm+1

dxm+1
Pl(x)

∣∣∣
x=cos θ

= m cot θPm
l (cos θ) − Pm+1

l (cos θ).

For m = l, sincePl is the l-th order polynomial, the sec-
ond term vanishes. A similar recursive relationship for an
alternate definition for the associated Legendre polynomial
is given in [12]. Based on this iterative relation, we can
compute the partial derivatives

∂θYlm =





clm∂θP
|m|
l (cos θ) cos(|m|ϕ), −l ≤ m ≤ −1,
clm√

2
∂θP

0
l (cos), m = 0,

clm∂θP
|m|
l (cos θ) sin(|m|ϕ), 1 ≤ m ≤ l

and

∂ϕYlm =





|m|clmP
|m|
l (cos θ) cos(|m|ϕ), −l ≤ m ≤ −1,

0, m = 0,

−|m|clmP
|m|
l (cos θ) sin(|m|ϕ), 1 ≤ m ≤ l.

Then the Riemannian metric tensors are estimated asg =
(gij) = 〈∂iν̂, ∂j ν̂〉 and the area elementG(θ, ϕ) =

√
det g.

The area element measures the transformed area inM of
the unit square of the parameterized spaceN via mapping
ν.

4. Statistical inference in S
2

For thei-th subject (1 ≤ i ≤ m), we denote the cortical
manifold asMi and its area element asGi(θ, ϕ). The area

element is influenced by the global brain size. If we enlarge
the cortical coordinates by the factor ofr, the area element
changes by the factor ofr2. So it is necessary to normalize
Gi such that it is invariant under scaling. The affine scale
invariant area element is given by

G̃i(θ, ϕ) =
4πG(θ, ϕ)

µ(Mi)
,

whereµ(Mi) is the total cortical area. If we enlarge the the
cortical coordinates by the factor ofr, µ(Mi) increases by
the factor ofr2 makingG̃i invariant under affine scaling.
The constant4π is multiplied so that the normalization is
with respect to the total surface area ofS2. Then we have
the following general linear model (GLM):

G̃i(θ, ϕ) = α0 + α1 · agei + α2(θ, ϕ) · groupi + ǫ(θ, ϕ),

whereǫ is a mean zero Gaussian random field.agei and
groupi are the age and a categorical dummy variable (0 for
autism and1 for control) respectively for subjecti. Then we
test if there is any group difference in the local area element
measure by testing

H0 : α2(θ, ϕ) = 0 for all θ andϕ.

vs. H1 : α2(θ, ϕ) 6= 0 for someθ andϕ.

At each point(θ, ϕ), aF -statistic with 1 andn−3 degrees of
freedom, denoted asF (θ, ϕ) is used as a test statistic. The
F -statistic is constructed as a ratio of the residual sum of
error of model fit ofH0 andH1. Since we need to perform
the test at every(θ, ϕ), this becomes a multiple comparison
problem. We used the random field theory [18, 19] based
thresholding to determine the statistical significance.

The probability of obtaining false positives (α-level) for
the one sided alternate hypothesis in given by

P (sup F (θ, ϕ) ≥ Fα) =

2∑

i=0

Li(S
2)

FWHMi ρi(y),

where Li is the i-th Lipschitz-Killing curvature or
Minkowski functional [18], andρi is thei-dimensional EC-
density [19]. FWHM denotes the full width at the half max-
imum of smoothing kernelKσ used in the weighted sp-
hearical harmonic representation. For the unit sphere, the
Lipschitz-Killing curvatures are

L0(S
2) = 2, L1(S

2) = 0, andL2(S
2) = 2π.

The EC-densities are

ρ0(y) =

∫ ∞

y

Γ(m
2 )

((m − 1)π)1/2Γ(m−1
2 )

(
1+

y2

m − 1

)−m/2

dy

ρ2(y) =
4 ln 2

(2π)3/2

Γ(m
2 )y

(
1 + y2

m−1

)−(m−2)/2

(m−1
2 )1/2Γ(m−1

2 )
.



Figure 6. Demonstration of cortical surface normalizationin S2

showing the nonlinear alignment of central and superior temporal
sulci for 149 subjects. Left: before normalization. Right:after
normalization. The probability of matching increases after nor-
malization.

4.1. Computing FWHM

The computation for the FWHM of the Gauss-Weistrass
kernel inS2 is not trivial due to the fact there is no known
close form expression for the FWHM as a function ofσ. So
the FWHM is computed numerically.

The Gauss-Weistrass kernel can be simplified from equa-
tion (9), via the harmonic addition theorem, as

Kσ(p, q) =

∞∑

l=0

2l + 1

4π
e−l(l+1)σP 0

l (cosϑ), (11)

whereϑ is the angle betweenp andq. Using the vector inner
product·, the angle can be written ascosϑ = p · q. The
maximum of the Gauss-Weistrass kernel is obtained when
ϑ = 0 and it is given by

k∑

l=0

2l + 1

4π
e−l(l+1)σ.

Now we fix ϕ = 0 and letp be the north pole, i.e.p =
(0, 0, 1). By varying q = (sin ϑ, 0, cosϑ) for 0 ≤ ϑ =
cos−1(p · q) ≤ π, we haveYlm = 0 if m 6= 0. Note
P 0

l (1) = 1 for all l. Then we solve numerically forϑ in

1

2

k∑

l=0

2l + 1

4π
e−l(l+1)σ =

k∑

l=0

2l + 1

4π
e−l(l+1)σP 0

l (cosϑ).

The FWHM is then2ϑ. Table 2 in Figure5 shows the
nonlinear relationship betweenσ and the corresponding
FWHM for k = 20.

5. Application to autism study

Three TeslaT1-weighted MR scans were acquired for 16
autistic and 12 control males. 16 autistic subjects were di-
agnosed with high functioning autism. The average ages

are17.1±2.8 and16.1±4.5 for control and autistic groups
respectively. Image intensity nonuniformity was corrected
using nonparametric nonuniform intensity normalization
method and then the image was spatially normalized into
the Montreal neurological institute (MNI) stereotaxic space
using a global affine transformation. Afterwards, an auto-
matic tissue-segmentation algorithm based on a supervised
artificial neural network classifier was used to classify each
voxel as cerebrospinal fluid (CSF), gray matter, or white
matter. Triangular meshes for outer cortical surfaces were
obtained by a deformable surface algorithm [13]. The mesh
starts as an ellipsoid located outside the brain and is shrunk
to match the cortical boundary. By performing an affine
transform on this ellipsoid, we obtainS2 mesh, which is
used in the weighted-SPHARM.

The segmented cortical meshes are normalized via a non-
linear surface-to-surface registration [15]. Cortical curva-
tures of two surfaces are mapped onto the sphere and they
are aligned by solving a regularization problem that tries
to minimize the discrepancy between two curvatures while
maximizing the smoothness of the alignment in such a way
that the pattern of gyral ridges are matched smoothly. This
regularization mechanism produces a smooth deformation
field, with very little folding. The deformation field is pa-
rameterized using a triangulated mesh and the algorithm
proceeds in a coarse-to-fine manner, with four levels of
mesh resolution. Figure6 demonstrates the effectiveness of
this surface registration algorithm by showing the increased
matching probability of superior temporal and central sulci
for 149 subjects.

Afterwards, the weighted-SPHARM representation is
used as an estimate for differentiable smooth parametriza-
tion of the meshes. We used parametersk = 20 and
σ = 0.001. The corresponding FWHM is 0.2262 mm. The
Riemannian metric tensors and the area element are com-
puted simultaneously. Based on the general linear model
framework, the statistical parametric map (F-statistic) is
computed and projected on bothS2 and the average cor-
tical surface (Figure7). The average cortical surface is con-
structed by averaging the anatomically corresponding ver-
tices in the meshes. It serves as an anatomical landmark for
showing where signals are detected. Then we performed
the random field theory based multiple comparison correc-
tion on the F-statistic atα = 0.05 level but we did not de-
tect any statistically significant cortical regions of local area
difference although we observed maximum F-value of 9.3
(uncorrected p-value of 0.0054) at the left temporal lobe.

6. Conclusions and discussions

In this paper, we presented a theoretical framework for
the weighted-SPHARM and its application in TBM. The
weighted-SPHARM is used as a differentiable parametriza-
tion of the cortex. This enable us to compute the Rieman-



Figure 7. The final statistical analysis result. TheF statistic is
computed at every vertices of the triangle mesh inS2 (left) and
mapped onto the average cortex (right). The average cortex serves
as an anatomical reference. The random field theory based mul-
tiple comparison atα = 0.05 did not show any significant result
although the maximum signal is detected at the left temporallobe
(supF = 9.3 corresponds to the uncorrectedp-value of 0.0054).

nian metric tensors and local area element. The local area
element is used in determining the statistical significanceof
the abnormal cortical tissue expansion/shrinking for a clini-
cal population. Unfortunately, we did not detect any statisti-
cally significant signal possibly due to low degree (k = 20)
used. So it is necessary to increase the computational effi-
ciency using a fast Fourier coefficient estimation technique
such as the iterated residual fitting (IRF) [3].

The weighted-SPHARM is a very flexible functional es-
timation technique for scalar and vector data obtained inS2.
It was shown that the solution to the isotropic heat diffusion
in S2 is the asymptotic limit of the weighted-SPHARM for
particular weights. We can extend this argument further.
The solution of any linear self-adjoint partial differential
equation (PDE) can be expressed as using the weighted-
SPAHRM representation so we can avoid using numerical
technique such as the finite element method in solving PDEs
in S2. This should serve as a spring board for investigating
the wide variety of PDE based data smoothing technique in
the kernel regression framework [10].
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