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General Linear Models

In this chapter, we cover general linear models (GLM) that have been widely
used in brain imaging applications. The GLM is a very flexible and general
statistical framework encompassing a wide variety of fixed effect models such
as the multiple regressions, the analysis of variance (ANOVA), the multivariate
analysis of variance (MANOVA), the analysis of covariance (ANCOVA) and
the multivariate analysis of covariance (MANCOVA) [119]. Note that the term
linear is misleading in a sense that the model can also include mathematically
nonlinear model terms such as the higher degree polynomials.

The GLM provides a framework for testing various associations and hy-
potheses while accounting for nuisance covariates in the model in a straight-
forward fashion. The effect of age, sex, brain size and possibly IQ can have
severe confounding effects on the final outcome of many anatomical and func-
tional imaging studies. Older population’s reduced functional activation could
be the consequence of age-related atrophy of neural systems [84]. Brain vol-
umes is significantly larger for children with autism 12 years old and younger
compared with normally developing children [11]. Therefore, it is desirable to
account for various confounding factors such as age and sex in the model. This
can be done using GLM. The parameters of the GLM are mainly estimated
by the least squares estimation and has been implemented in many statisti-
cal packages such as R (www.r-project.org) or Splus [92] and brain imag-
ing packages such as SPM (www.fil.ion.ucl.ac.uk/spm) and fMRI-STAT
(www.math.mcgill.ca/keith/fmristat).

1.1 General Linear Models

Let yi be the response variable, which is mainly coming from images and
xi = (xi1, · · · , xip) to be the variables of interest and zi = (zi1, · · · , zik) to
be nuisance variables corresponding to the i-th subject. We assume there are
n subjects. We are interested in testing the significance of the group variable
while accounting for age and gender. In a more general setting, we have a
GLM

yi = ziλ + xiβ + εi
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where λ = (λ1, · · · , λk)′ and β = (β1, · · · , βp)′ are unknown parameter vectors
to be estimated. We assume ε to be the usual zero mean Gaussian noise.

The significance of the variable of interests xi is determined by testing the
null hypothesis

H0 : β = 0 vs. H1 : β 6= 0.

The fit of the reduced model corresponding to β = 0, i.e.

yi = ziλ, (1.1)

is measured by the sum of the squared errors (SSE):

SSE0 =
n∑
i=1

(yi − ziλ̂0)2,

where λ̂0 is the least squares estimation obtained from the reduced model.
The reduced model (1.1) can be written in a matrix form y1

...
yn


︸ ︷︷ ︸

y

=

 z11 · · · z1k

...
. . .

...
zn1 · · · znk


︸ ︷︷ ︸

Z

 λ1

...
λn


︸ ︷︷ ︸

λ

. (1.2)

By multiplying Z′ on the both sides, we obtain

Z′y = Z′Zλ.

Now the matrix Z′Z is a full rank and can be invertible if n ≥ k, which is the
usual case in brain imaging. Therefore, the matrix equation can be solved by
performing a matrix inversion

λ̂0 = (Z′Z)−1Z′y.

Similarly the fit of the full model corresponding to β 6= 0, i.e.

yi = ziλ + xiβ (1.3)

is measured by

SSE1 =
n∑
i=1

(yi − ziλ̂1 − xiβ̂1)2,

where λ̂1 and β̂1 are the least squares estimation from the full model. The
full model can be written in a matrix form by concatenating the row vectors
zi and xi into a larger row vector (zi,xi), and the column vectors λ and β
into a larger column vector (λ′,β′)′. Then the full model can be also written
in a matrix form and solved by the matrix inversion.
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Note that

SSE1 = min
λ1,β1

n∑
i=1

(yi − ziλ1 − xiβ1)2 ≤ min
λ0

n∑
i=1

(yi − ziλ0)2 = SSE0.

So the larger the value of SSE0 − SSE1, more significant the contribution of
the coefficients β is. Under the assumption of the null hypothesis H0, the test
statistic is the ratio

F =
(SSE0 − SSE1)/p
SSE0/(n− p− k)

∼ Fp,n−p−k. (1.4)

The larger the F value, it is more unlikely to accept H0.
When p = 1, the test statistic F is distributed as F1,n−1−k, which is the

square of the student t-distribution with n − 1 − k degrees of freedom, i.e.
t2n−1−k. In this particular case, it is better to use t-statistic. The advantage
of using the t-statistic is that unlike the F -statistic, it has two sides so we
can actually use it to test for one sided alternative hypothesis H1 : β1 ≥ 0 or
H1 : β1 ≤ 0. Therefore, the t-statistic map can provides the direction of the
group difference that the F -statistic map cannot provide.

1.1.1 R-square

The R-square of a model explains the proportion of variability in measurement
that is accounted by the model. Sometime R-square is called the coefficient
of determination and it is given as the square of a correlation coefficient for a
very simple model. For a linear model involving the response variable yi, the
total sum of squares (SST) measures total total variation in response yi and
is defined as

SST =
n∑
i=1

(yi − ȳ)2,

where is the sample mean of yi.
On the other hand, SSE measures the amount of variability in yi that is not

explained by the model. Note that SSE is the minimum of the sum of squared
residual of any linear model, SSE is always smaller than SST. Therefore, the
amount of variability explained by the model is SST-SSE. The proportion of
variability explained by the model is then

R2 =
SST− SSE

SST
,

which is the coefficient of determination. The R-square ranges between 0 and
1 and the value larger than 0.5 is usually considered as significant.
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1.1.2 GLM for Whole Brain Images

In brain imaging, the linear model of type (3.16) is usually fitted in each
voxel separately. If image dimension is of size 100 × 100 × 200 for instance,
we need to fit 2 million linear models, which causes a serious computational
bottleneck. So what we need is to reformulate the problem such that we fit all
linear models simultaneously in a slice so that we only need to perform the
least squares estimation 200 times.

Let yj be the measurement vector at the j-th voxel in a slice. Assume
there are m voxels in a slice. We have the same design matrix Z for all m
voxels. Then we need to estimate the parameter vector λj in

yj = Zλj . (1.5)

each j. Instead of solving (1.6) separately, we combine all of them together so
that we have matrix equation

[y1, · · · ,ym]︸ ︷︷ ︸
Y

= Z [λ1, · · · ,λm]︸ ︷︷ ︸
Λ

. (1.6)

The least squares estimation of the parameter matrix Λ proceeds similarly
and given by

Λ̂ = (Z′Z)−1Z′Y.

The least squares estimation technique does not work for sparsely sampled
data where n � k. In this case, Z′Z is size k × k but only of rank n. So we
can’t invert Z′Z directly and the method breaks down. The generalized inverse
can be used instead of the usual matrix inverse for slightly underdetermined
system but for significantly underdetermined system, we need to regularize
using the l1-norm penalty.

1.2 Voxel-Based Morphometry

GLM has often been use in voxel-based morphometry (VBM). Let us review
basic VBM that is needed to understand how GLM is used in VBM. VBM
involves a voxel-wise comparison of the local concentration of gray or white
matters between populations [8]. It requires spatially normalizing images from
all the subjects in the study to a template. This is followed by segmenting
the gray and white matters and cerebrospinal fluid (CSF) from the spatially
normalized images and smoothing out the segmented images. The binary seg-
mented images are refereed as tissue densities (Figure 1.1). Statistical infer-
ence is subsequently done at each voxel level on the tissue densities while
accounting for multiple comparisons.

The tissue segmentation is based on a Gaussian mixture model that as-
sumes the image intensity values to follow the mixture of three independent
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FIGURE 1.1
(a) Original white matter density in the corpus callosum obtained from the
SPM package. (b) Gaussian kernel smoothing on the white matter density
map. (c) The sample mean of smoothed images of all subjects.

Gaussians and the unknown parameters of Gaussian distributions are esti-
mated by maximizing the likelihood function using the expectation max-
imization (EM) algorithm. Figure 1.2 shows an example of two compo-
nent Gaussian mixtures. The widely used Statistical Parametric Mapping
(SPM) package (Wellcome Department of Cognitive Neurology, London, UK.
www.fil.ion.ucl.ac.uk/spm) is based on a Bayesian formulation of the
Gaussian mixture model with a prior probability image obtained by aver-
aging already segmented large number of brain images [10, 8]. Based on the
prior probability of each voxel belong to a specific tissue type, the Bayesian
framework is used to get the posterior probability. This Bayesian update of the
probability is iterated many times until the probability converges. The result-
ing probability map is interpreted as the tissue density. This is not physical
density so it should be interpreted probabilistically.

The Bayesian segmentation framework utilizes the Bayes theorem in es-
timating the poster probability of a voxel belong to a particular tissue type
from a given prior probability. Let C be the event of a voxel belong to a par-
ticular class. We may assume there are three classes corresponding to gray,
white matters and CSF. The prior probability P (C) is obtained by averaging
a large sample of normalized binary segmentation and dividing the average by
the total number of sample. Let T be the event that a voxel has a particular
image intensity value. This is that we usually observe in T1-weighted MRI.
We wish to obtain the conditional probability P (C|T ) of the voxel belong to
the class C given that we have observed T :

P (C|T ) =
P (C ∩ T )
P (T )

. (1.7)

P (C|T ) is interpreted as the probability of the voxel belong to a specific
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class when the voxel has a particular intensity value. This is what we likely
to determine in Bayesian segmentation and it is termed as tissue density in
VBM. The numerator can be written as P (C∩T ) = P (T |C)P (C) while, from
the law of total probability, the total probability P (T ) can be decomposed as

P (T ) =
∑
C

P (T ∩ C) =
∑
C

P (T |C)P (C).

The conditional probability (1.7) can be written in terms of the prior proba-
bility as

P (C|T ) =
P (T |C)P (C)∑
C P (T |C)P (C)

. (1.8)

The likelihood term P (T |C) is interpreted as the probability of a voxel obtain-
ing a particular intensity value given the voxel belong to a particular tissue
type, and it can be estimated from mixture models. The likelihood term is
given by evaluating the probability density for the class C at each voxel in-
tensity value [8].

1.2.1 Mixture Models

To estimate the likelihood term, it is necessary to introduce mixture mod-
els and the expectation-maximization algorithm. Mixture models have been
widely used for segmenting brain images. The image intensity value at a given
voxel can come from different tissue classes with specific proportions pj . We
will assume 0 < pj < 1 and

∑
j pj = 1. We may assume that image intensity

values for each class to follow a certain distribution fj . This is the likelihood
term P (T |C). Then the k-component mixture model on image intensity val-
ues assume image intensity values Y to come from k different distributions
f1, · · · , fk with proportions p1, · · · , pk. This can be modeled by conditioning
on a multinomial distribution. Another way of saying this is that the the k-
component mixture model can be obtained by mixing samples obtained from
distributions fj with pj proportions.

Let Xj be an indicator variable for the j-th class such that P (Xj = 1) = pj
and P (Xj = 0) = 1− pj . Xj is a Bernoulli random variable. The collection of
variables X = (X1, · · · , Xk) form a multinomial distribution with parameters
(p1, · · · , pk) if we have the additional constraint X1 + · · · + Xk) = 1. The
probability mass function of X is given by

f(x1, · · · , xk) = P (X1 = x1, · · · , Xk = xk) = px1
1 · · · pxkk .

Now we define a random variable Y conditionally on the event Xj = 1 such
that Y ∼ fj if Xj = 1. The conditional density f(y|xj = 1) = fj is the
distribution for the j-th class. The joint density between Xj and Y is then
given by f(xj = 1, y) = pjfj(y), which can be compactly written as

f(x, y) = [p1f1(y)]x1 · · · [pkfk(y)]xk
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FIGURE 1.2
Simulated two component Gaussian mixture with parameters µ1 = 10, σ1 =√

5, µ2 = 1, σ2 = 1,1 = 0.5,2 = 0.5. The parameters are then estimated using
the EM-algorithm. Using the estimated model, we cluster data depending on
f1(x) < f2(x) or f1(x) ≥ f2(x).

for all j. The marginal density of Y is subsequently given as

f(y) =
∑
x

f(x, y) =
k∑
i=1

pifi(y). (1.9)

The unknown parameters in (1.9) will be denoted as Θ. The unknown parame-
ters include the mixing proportions pj as well as parameters of the distribution
fi. Then we write the k-component mixture model as

f(y|Θ) =
k∑
i=1

pifi(y). (1.10)

to indicate the dependence of the model on the parameters Θ. The most
widely used technique for estimating Θ in (1.10) is the maximum likelihood
estimation (MLE). Suppose we have a sample Y = {Y1, · · · , Yn} drawn from
the distribution f(y|Θ). The likelihood estimation of Θ is given by maximizing



8 Statistical Methods in Brain Image Analysis with MATLAB

the loglikelihood:

Θ̂ = arg max
Θ

n∏
i=1

f(yi|Θ) = arg max
Θ

n∑
i=1

ln f(yi|Θ).

For most mixture models, the optimization cannot be done analytically and
it requires an iterative approximation technique called the expectation maxi-
mization (EM) algorithm.

1.2.2 EM-Algorithm

The expectation maximization (EM) algorithm was first introduced by [41].
For the introductory overview on the algorithm, see [103] and [47]. The EM-
algorithm proceeds as follows.

Following the argument in [103], we augment the observed data Y with
latent (unobserved or missing) data Y m such that the complete data Y c =
(Y, Y m). The latent data is introduced as an artifice to make the problem
tractable. The probability density of the complete data Y c is denoted as
f(yc) = f(y, ym). The conditional density for the latent data Y m, condition
on observation Y , is

f(ym|y,Θ) =
f(y, ym|Θ)
f(y|Θ)

.

Again we introduced Θ to indicate the dependence of the probability on the
parameters. Taking the logarithm on both sides, we get the loglikelihood for
the observed data

ln f(Y |Θ) = ln f(Y c|Θ)− ln f(Y m|Y,Θ).

Since the logarithm is a strictly increasing function, the value that maximizes
f(Y |Θ) also maximizes ln f(Y |Θ). Now taking the expectation with respect
to f(ym|y,Θ0) for some fixed Θ0 on the both sides, we have

E[ln f(Y |Θ)|Y,Θ0] = E[ln f(Y c|Θ)|Y,Θ0]− E[ln f(Y m|Y,Θ)|Y,Θ0]. (1.11)

Now denote the expected loglikelihood for the complete data as

Q(Θ|Θ0, Y ) = E[ln f(Y c|Θ)|Y,Θ0].

We maximize the likelihood in iterative two-steps:

(1) E-step: compute the expectation Q(Θ|Θ̂j−1, Y ).

(2) M-step: maximize Q(Θ|Θ̂j−1, Y ) and take

Θ̂j = arg max
Θ

Q(Θ|Θ̂j−1, Y ). (1.12)
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Starting with the initial estimate Θ̂0, we have a sequence of estimators
Θ̂1, Θ̂2, · · · and it can be shown to converges to the true MLE Θ̂. However, the
proof is beyond the scope of the book and we will only show that the Q func-
tion monotonically increases. The argument is as follows. By the definition
(1.12), we have

Q(Θ̂j |Θ̂j , y) ≤ Q(Θ̂j+1|Θ̂j , y).

Now let R(Θ|Θ0, Y ) = E[ln f(Y m|Y,Θ)|Y,Θ0]. This is the second term in
(1.11). From the Jensen’s inequality, we can show that

R(Θ|Θ0, y)−R(Θ0|Θ0, y) ≤ ln
∫

f(ym|y,Θ)
f(ym|y,Θ0)

f(ym|y,Θ0) dym = 0.

Hence we have R(Θ̂j+1|Θ̂j , y) ≤ R(Θ̂j |Θ̂j , y). Consequently

ln f(y|Θ̂j) = Q(Θ̂j |Θ̂j , y)−R(Θ̂j |Θ̂j , y)

≤ Q(Θ̂j+1|Θ̂j , y)−R(Θ̂j+1|Θ̂j , y)

≤ ln f(y|Θ̂j+1).

The inequality guarantees the the sequence of estimators Θ̂j monotonically
increases the likelihood function. Further, since the monotonically increasing
sequence is bounded, i.e. ln f(y|Θ̂j) ≤ ln f(y|Θ̂), where Θ̂ is the MLE, the
sequence must be converging to a constant, but it is not clear if the limit is
in fact ln f(y|Θ̂). To guarantee that the limit converges to the true maximum
likelihood estimator, additional conditions are needed boyles.1983, wu.1983.

The difficulty of implementing the EM-algorithm is at the E-step where we
need to compute the conditional expectation Q(Θ|Θ̂j−1, y). The Monte Carlo
version of the EM algorithm overcome this problem by simulating the missing
data Y m from the conditional density f(ym|y,Θ) so that

Q̂(Θ|Θ0, y) =
1
k

k∑
j=1

ln f(Y, Y m|Θ).

As an illustration, two component Gaussian mixture model is shown in
detail but the three component mixture model is similar. The image intensity
will be modelled as a Gaussian mixture of the form

f(y) = p1f1(y) + p2f2(y)

where p1+p2 = 1 and f1 ∼ N(µ1, σ
2
1) and f2 ∼ N(µ2, σ

2
2) are all known. There

are 5 unknown parameters Θ = {p1, µ1, µ2, σ
2
1 , σ

2
2} to be estimated. Once p1

is estimated, p2 is automatically given as 1 − p1. The likelihood function is
given by

f(Θ|y) =
n∏
i=1

[
p1f1(yi) + p2f2(yi)

]
.
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The loglikelihood is

L(Θ|y) =
n∑
i=1

ln
[
p1f1(yi) + p2f2(yi)

]
.

The loglikelihood is maximized by solving

∂L(Θ|y)
∂pi

= 0,
∂L(Θ|y)
∂µi

= 0,
∂L(Θ|y)
∂σ2

i

= 0

but this is not tractable. So we argument the data with the latent data and
apply the EM-algorithm.

Let X be a Bernoulli random variable with P (X = 1) = p and P (X =
0) = q = 1 − p. This choice of latent random variable makes the subsequent
EM-aglorithm to be tractable. Now define the conditional distribution Y ∼ f1

if X = 1 and Y ∼ f2 if X = 0. This defines the conditional density f(y|x).
The joint density f(x, y) is f(1, y) = pf1(y) and f(0, y) = qf2(y). This can be
compactly written as

f(x, y) =
[
pf1(y)

]x[
qf2(y)

]1−x
.

The marginal density of Y is obviously

f(y) =
∑
x=0,1

f(x, y) = pf1(y) + qf2(y).

The conditional density of X given Y is then

f(x|y) =
[pf1(y)]x[qf2(y)]1−x

pf1(y) + qf2(y)
.

The conditional expectation of X with respect to f(x|y) is then

E(X|y, p) =
pf1(y)

pf1(y) + qf2(y)
. (1.13)

The likelihood for the complete data (x, y) is

f(Θ|x, y) =
n∏
i=1

[
pf1(yi)

]xi[
qf2(yi)

]1−xi
and the corresponding loglikelihood is given by

L(Θ|x, y) =
n∑
i=1

xi ln
[pf1(yi)
qf2(yi)

]
+ ln

[
qf2(yi)

]
.
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Take the expectation with respect to the latent variable X to get the Q-
function

Q(Θ|Θ0, y) = E
[

lnL(Θ|X,Y )
∣∣y,Θ0

]
=

n∑
i=1

E(Xi|y,Θ0) ln
[pf1(yi)
qf2(yi)

]
+ ln

[
qf2(yi)

]
. (1.14)

From (1.13), we have

E(Xi|y,Θ0) =
p0f1(yi)

p0f1(yi) + q0f2(yi)
= π1i

is the posterior probability of the i-th observation coming from the first class.
Hence the expression (1.14) can be written as

Q(Θ|Θ0, y) =
n∑
i=1

πi ln
[pf1(yi)
qf2(yi)

]
+ ln

[
qf2(yi)

]
. (1.15)

Maximizing Q with respect to p by solving ∂Q/∂p = 0, we obtain

p =
1
n

n∑
i=1

π1i. (1.16)

(1.16) states that the prior probability for the 1st class is estimated as the
average of the posterior probabilities in the 1st class. Note that we did not
use the explicit forms for f1 and f2 so this result is general for any type of
mixture distributions. Based on (1.16), we set up the iteration

p̂j+1 =
1
n

n∑
i=1

p̂jf1(yi)
p̂jf1(yi) + (1− p̂j)f2(yi)

with any arbitrary initial p̂0 ∈ (0, 1). For another parameters, we obtain sim-
ilar iterative formulas:

µj =
∑
i πjiyi∑
i πji

and

σ2
j =

∑
i πji(yi − µj)2∑

i πji
.

1.3 Application to Autism

Autism is a neurodevelopmental disorder of brain function that has begun to
attract in vivo structural magnetic resonance imaging (MRI) studies in the
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region of the corpus callosum [43, 62, 83, 93, 94]. The corpus callosum is a
white matter structure that can be used as an index of neural connectivity
between brain regions [62] (Figure 1.3). There is little understanding about
the link between the functional deficit and the underlying abnormal anatomy
in autism, which provides motivation for our study. These studies use the
Witelson partition or a similar partition scheme of the corpus callosum [125].
Witelson partitioned the midsagittal cross-sectional images of the corpus cal-
losum along the maximum anterior-posterior line [112] and defined the region
of the genu, rostrum, midbodies, isthmus and splenium from the anterior to
posterior direction. Based on the Witelson partition, there has been a consis-
tent finding in abnormal reduction in anterior, midbody and posterior of the
corpus callosum [17].

Piven et al. (1997) compared 35 autistic individuals with 36 normal control
subjects controlling for total brain volume, gender and IQ and detected a
statistically significant smaller midbody and posterior regions of the corpus
callosum in the autistic group [94]. Manes et al. (1999) compared 27 low
functioning autistic individuals with 17 normal controls adjusting for the total
brain volume [83]. They found a smaller corpus callosum compared to the
control group in genu, rostrum, anterior midbody, posterior midbody and
isthmus but did not find statistically significant differences in the rostrum
and the splenium although the sample mean of the rostrum and splenium size
are smaller than that of the control group. Hardan et al. (2000) compared
22 high functioning autistic to 22 individually matched control subjects and
showed smaller genu and rostrum of the corpus callosum adjusting for the
total brain volume based on the Witelson partition [62]. The smaller corpus
callosum size was considered as an indication of a decrease in interhemispheric
connectivity. They did not detect other regions of significant size difference.
For an extensive review of structural MRI studies for autism that have been
published between 1966 and 2003, one may refer to Brambilla et al. (2003)
[17].

The shortcoming of the Witelson partition is the artificial partitioning.
The Witelson partition may dilute the power of detection if the anatomi-
cal difference occurs near the partition boundary. Alternative voxel-wise ap-
proaches that avoid predefined regions of interests (ROI) have begun to be
used in structural autism studies. Vidal et al. (2003) used the tensor-based
morphometry (TBM) to show reduced callosal thickness in the genu, mid-
body and splenium in autistic children [121]. Hoffmann et al. (2004) used a
similar TBM to show curvature difference in the midbody [65]. Abell et al.
(1999) used voxel-based morphometry (VBM) in high functioning autism to
show decreased gray matter volume in the right paracingulate sulcus, the left
occipito-temporal cortex and increased amygdala and periamygdaloid cortex.

The advantage of the VBM framework over the Witelson partition ap-
proach is that it is completely automated and does not require artificial parti-
tioning of the corpus callosum that introduces undesirable bias. Further it is
not restricted to a priori ROIs enabling us to perform the statistical analysis
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FIGURE 1.3
Midsagittal cross section of brain. Corpus callosum is the a colluction of neural
fibers that connects the left and the right cerebral hemispheres. The poste-
rior part of the corpus callosum is called the splenium; the anterior part is
called the genu. Between them is the midbody. The illustration is from Gray’s
Anatomy [58].

at each voxel level and to pinpoint the exact location of the anatomical differ-
ences within ROI even if there is no ROI size differences. Although VBM was
originally developed for whole brain 3D morphometry, our study concentrates
on the midsagittal cross sectional corpus callosum regions to be able to com-
pare the result with the previous 2D Witelson partition studies [62, 83, 94].

1.3.1 White matter Density Maps

Gender and handedness affect the corpus callosum anatomy [124, 125] so all
the subjects used in the data set are right-handed males. Sixteen autistic
subjects were recruited for this study from a list of individuals with a diagnosis
of high functioning autism in the Madison and Milwaukee area maintained



14 Statistical Methods in Brain Image Analysis with MATLAB

for research purposes by the Waisman center at the University of Wisconsin-
Madison. Diagnoses were confirmed with the Autism Diagnostic Interview -
Revised (ADI-R) or clinical interview administered by a trained and certified
psychologist at the Waisman center. All participants met DSM-IV criteria
for autism or Asperger’s pervasive developmental disorder. Twelve healthy,
typically developing males with no current or past psychological diagnoses
served as a control group. The average age for the control subject is 17.1±2.8
and the autistic subjects is 16.1± 4.5 which is in compatible age range.

High resolution anatomical MRI scans were obtained using a 3-Tesla GE
SIGNA (General Electric Medical Systems, Waukesha, WI) scanner with a
quadrature head RF coil. A three-dimensional, spoiled gradient-echo (SPGR)
pulse sequence was used to generate T1-weighted images. The imaging pa-
rameters were TR/TE 21/8 ms, flip angle 30◦, 240 mm field of view, 256x192
in-plane acquisition matrix (interpolated on the scanner to 256x256), and
128 axial slices (1.2 mm thick) covering the whole brain. Then the midsagit-
tal cross-sections of the white matter are segmented using the SPM-package
(Figure 1.4).

1.3.2 Manipulating Density Maps

The segmented imaging data is stored in the directory CCdensity as text files
with the file extension *.txt. For instance, CCautism12.txt is the the white
matter density for the 12th autistic subject while CCcontrol03.txt is the
white matter density for the 3rd control subject. This is the data set published
in [30] where white matter density in the corpus callosum was analyzed. Figure
1.4 shows the images of white matter density at corpus callosum.

Sequently we run the following codes. Subject identifies are usually given
in numbers:

c1=[01 02 05 08 09]’;
c2=[10 11 12 13 14 15 16]’;

a1=[01 02 03 04 05 06 07 08 09]’
a2=[10 11 13 14 16 17 18]’;

The file names are then given with subject identifiers as strings:

file_c1=strcat(’CCcontrol0’,int2str(c1),’.txt’);
file_c2=strcat(’CCcontrol’,int2str(c2),’.txt’);
file_c=[file_c1; file_c2]

file_a1=strcat(’CCautism0’,int2str(a1),’.txt’);
file_a2=strcat(’CCautism’,int2str(a2),’.txt’);
file_a=[file_a1; file_a2]

This produces the list of file names:
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FIGURE 1.4
Midsaggital cross-section images of corpus callosum for 28 subjects. The first
12 subjects are controls while the next 16 subjects are autistic subjects. We
are interested in localizing the density difference between the two groups.

file_c =

CCcontrol01.txt
CCcontrol02.txt
CCcontrol05.txt
.
.
.

We need to concatenate in two different ways since int2str(08) does not
produce 08 but 8. The total number of subjects in each group is

n_c=size(file_c,1)
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n_a=size(file_a,1)

n_c =
12

n_a =
16

The dimension of images is 95× 68. So we let

d1=95; d2=68;

Once we have the list of files, we load them sequentially into matrices:

density_a=zeros(n_c,d1,d2);
density_a=zeros(n_a,d1,d2);

for i=1:n_c
temp=load(file_c(i,:));
temp=reshape(temp,d1,d2);
density_c(i,:,:)=temp;

end;

for i=1:n_a
temp=load(file_a(i,:));
temp=reshape(temp,d1,d2);
density_a(i,:,:)=temp;

end;

All 28 subject images can be visualized using

img=[];
for i=1:n_c

img = [img, squeeze(density_c(i,:,:))];
end;
figure; imagesc(img); colormap(’bone’); colorbar;

img=[];
for i=1:n_a

img = [img, squeeze(density_a(i,:,:))];
end;
figure; imagesc(img); colormap(’bone’); colorbar

The resulting density maps are shown in Figure 1.4. The first 12 images are
controls and the next 16 images are autistic subjects. The additional command
set(gcf,’Color’,’w’) will set the background of an image white. To save
the image as a file, print(’-dtiff’, ’-r300’, ’CC’) can be used.



General Linear Models 17

1.3.3 MATLAB Implementation

A simple example of GLM is the usual two-sample t-test setting. Given two
groups, we are interested in testing the significance of group difference on
tissue density. So we consider the following GLM:

densityi = λ1 + β1 · groupi + ε, (1.17)

where the dummy variable group is 1 for autism and 0 for control. This is the
case for k = 1, zi1 = 1 and p = 1. Another more complicated example is the
case of liner regression for two groups, which can be combined into a single
GLM:

densityi = λ1 + λ2 · agei + β1 · groupi (1.18)

This is the case for k = 2 and p = 1 (Figure 1.7). We will implement (1.18)
in MATLAB and estimate the parameters using the least squares method.

Once we loaded images, we set up a general linear model and estimate the
parameters in a least squares fashion. The combined age information of both
groups is stored in age which is a column vector of size 28 × 1. The design
matrix X consists of a column of ones and vector age.

age_c = [15 18 18 16 15 13 18 15 21 17 16 23]’
age_a = [15 20 17 13 12 15 25 14 15 14 24 18 10 12 22 12]’
age=[age_c;age_a];

const=ones(n_c+n_a,1);
X=[const, age];

The density map for controls density c is of size 12×95×68. We reshape
it into a 2-dimensional matrix of size 12× (95 · 68).

p_c=reshape(density_c,12,d1*d2);
p_a=reshape(density_a,16,d1*d2);
p=[p_c; p_a];

Then we estimate the parameters in the linear model

density = lambda0 + lambda1 · age (1.19)

using the pseudoinverse operation pinv (Figure 1.5). The estimated parameter
maps are given in Figure 1.5.

lambda=zeros(2,d1*d2);
for i=1:(d1*d2)

lambda(:,i)=pinv(X)*p(:,i);
end
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FIGURE 1.5
The least squares estimation of the parameters lambda0 and lambda1.

lambda0=reshape(lambda(1,:),d1,d2);
lambda1=reshape(lambda(2,:),d1,d2);

figure;imagesc(lambda0);colorbar; colormap(’bone’)
figure;imagesc(lambda1);colorbar; colormap(’bone’)

The sum of the residual at each pixel is given by

SSE0 = sum((p - (X*lambda)).^2);
SSE0=reshape(SSE0,d1,d2);

We add the additional term group in (1.19):

density = lambda0 + lambda1 · age + lambda2 · group.
For this, we have another column in the design matrix X:

group = [zeros(12,1); ones(16,1)]
X=[const, age, group];

The design matrix now looks like

...
1 16 0
1 23 0
1 15 1
1 20 1
...

The parameters are again estimated by the pseudoinverse operation:

lambda=zeros(3, d1*d2);
for i=1:(d1*d2)

lambda(:,i) = pinv(X)*p(:,i);
end
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FIGURE 1.6
The F -statistic of testing the significance of the term group and the corre-
sponding p-value in log10 scale. The signal is detected in the genu of the corpus
callosum. Since we didn’t smooth the density maps, we are getting a lot of
noise.

The total sum of squared error is then

SSE1 = sum((p - (X*lambda)).^2);
SSE1=reshape(SSE1,d1,d2);

The statistic of testing the significance of group is based on the ratio of
the sum of squared errors between SSE0 and SSE1 (Figure 1.6).

F=25*(SSE0-SSE1)./SSE0;
imagesc(F);colorbar; colormap(’bone’)
pvalue=1 - fcdf(F,1,25);
figure; imagesc(-log10(pvalue)); colormap(’bone’)

1.4 Modeling Growth Rate

Let us cover few other issues that are left out. As shown in Figures 1.8 and
1.7, each group has different growth rate, the change of white matter density
over age. The question is if the growth rate difference is statistically signifi-
cant. This can be tested within the GLM framework. Note the GLM incorpo-
rates two-way ANOVA and ANCOVA. Assume there are total n subjects. Let
densityi be the white matter density for the i-th subject. Let agei be the age
of the i-th subject. Let groupi be the group variable of the i-th subject taking
value 1 for autistic and 0 for controls. Then we have the following GLM:

densityi = β0 + β1agei + β2groupi + β3agei · groupi + εi. (1.20)
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From (1.20), we have two separate models for each group. For controls
(groupi = 0),

densityi = β0 + β1agei + εi.

For autistic subjects (groupi = 1), we have

densityi = (β0 + β2) + (β1 + β3)agei + εi.

Testing the equality of the growth rate is equivalent to testing

H0 : β1 = β1 + β3

or equivalently
H0 : β3 = 0.

We need to test for the significance of the interaction term β3 in the model.
The fit of model is measured by the sum of squared errors (SSE). Let SSE0

and SSE1 be the SSE for the reduced (when β3 = 0)and the full model (when
β3 6= 0) respectively. Then

SSE0 =
m+n∑
i=1

(densityi − β̂0 + β̂1agei − β̂2groupi)
2,

where β̂i are the estimated regression coefficients from the reduced model.
Similarly for the full model,

SSE1 =
m+n∑
i=1

(densityi − γ̂0 + γ̂1agei − γ̂2groupi − γ̂3agei · groupi)2,

where γ̂i are the estimated regression coefficients from the full model. Then
the F -statistic is given by the ratio of SSE:

F =
(SSE0 − SSE1)/1
SSE0/(n− 1− 3)

∼ F1,n−1−3.

1.5 Gaussian Kernel Smoothing

All brain images are inherently noisy due to errors associated with image
acquisition. Compounding the image acquisition errors, there are errors caused
by image registration and segmentation. So it is necessary to smooth out the
segmented images before any morphometric analysis is performed. Among
many possible image smoothing methods [74, 91], Gaussian kernel smoothing
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has emerged as a de facto smoothing technique in brain imaging. Consider a
n-dimensional Gaussian kernel

K(x) =
1

(2π)n/2
exp

(
− ‖x‖

2

2

)
,

where ‖ · ‖ is the Euclidean norm of x ∈ Rn. The rescaled kernel Kσ is defined
as

Kσ(x) =
1
σn
K
(x
σ

)
. (1.21)

Then an integral version of Gaussian kernel smoothing in n-dimension is de-
fined as

F (x, σ) =
∫

Rn
Kσ(x− y)f(y) dy,

where F (x, σ) is the scale-space representation of image f(x) first introduced
in [126]. Each F (x, σ) for different values of σ produces a blurred copy of its
original. The resulting scale-space representation from coarse to fine resolu-
tion can be used in multiscale approaches such as hierarchical searches and
image segmentation. See [79], [96], [97], [108], and [132] for the review of the
major problems in scale-space and multiscale descriptions of images.
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FIGURE 1.7
GLM fit of white matter density over age and group at each voxel: density =
λ1+λ2 ·age+λ3 ·group. The intercept and slopes of the linear regression is for
each group. The autistic group shows lower white matter density compared
to the control at lower age but gains white matter over time while the control
group shows decreasing white matter density with age [30].

FIGURE 1.8
Linear regression fit for each group (red=autism, blue = control) (a) Genu
(b) Midbody and (c) spleninum of the corpus callosum.
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Random Fields Theory

NOTE: MATLAB COMPONENTS ARE NOT ADDED YET.

In this chapter, we cover multiple comparisons issue that has been crucial
in determining over all statistical significance in a correlated test statistic over
a whole brain image. In practice, F statistics in adjacent voxels are correlated.
So there is the problem of multiple comparisons, which we simply neglected in
obtaining the p-value map. The multiple comparisons will be covered in detail
later but here we will go over the concept briefly. For multiple comparisons
that account for spatially correlated error, we can use the result of the random
field theory [128, 133], the false discovery rates [14, 15, 52] or permutation tests
[90]. If F (x) is a smooth F -field, the corrected p-value for adjusting multiple
comparisons over the all pixels in the corpus callosum M is given by

P
(

sup
x∈M

Y (x) > h
)
≈

2∑
d=0

µd(Ω)ρd(h)

where µd are the d-dimensional Minkowski functionals and ρd are the d-
dimentional Euler characteristic (EC) density [133]. For non regular jagged
shapes such as the corpus callosum, the Minkowski functionals can be esti-
mated in the following fashion. Treating pixels insideM as points on a lattice,
V is the number of suh points, E is the number of edges connecting each ad-
jacent lattice points, F is the number of faces formed by 4 connected edges.
Then µ0 = χ(Ω) = V − E + F = 1, µ1 = (E − 2F )δ, µ2 = Fδ2 where δ = 2
is the resolution of the image [127]. To find the number of edges and pixels
contained in M, we start from an initial face F0 in the splenium of CC and
add an additional face in the lattice one by one while counting the additional
edges and faces [30]. A similar approach for computing Minkowski function-
als for jagged irregular shapes has been implemented in FMRISTAT package
(http://www.math.mcgill.ca/keith/fmristat).

In many brain imaging studies, it is necessary to model measurements at
each voxel as a random field. For instance, in the deformation-based mor-
phometry (DBM), deformation fields are usually modeled as continuous ran-
dom fields. The generalization of a continuous stochastic process defined in
R to a higher dimensional abstract space is called a random field. For the
introduction to random fields, see [5], [42] and [135]. In the usual random field

23
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modeling, measurement Y at position x ∈M is modeled as

Y (x) = µ(x) + ε(x)

where µ is the unknown signal to be estimated and ε is the measurement error.
The measurement error at each fixed x can be modeled as a random variable.
Then the collection of random variables {ε(x) : x ∈ M} is called a stochastic
process or random field. The more precise measure-theoretic definition can be
found in [5]. Random field modeling can be done beyond the usual Euclidean
space to curved cortical and subcortical manifolds [69, 34].

2.1 Covariance Functions

Given a probability space, a random field T (x) defined in Rn is a function
such that for every fixed x ∈ Rn, T (x) is a random variable on the probability
space. The covariance function R(x, y) of a random field T is defined as

R(x, y) = E
[
T (x)− ET (x)

][
T (y)− ET (y)

]
.

Consider a random field T . If the joint distribution of T (x1), · · ·T (xm) given
by

Fx1,··· ,xm(z1, · · · , zm) = P
[
T (x1) ≤ z1, · · · , T (xm) ≤ zm

]
is invariant under the translation

(x1, · · · , xm)→ (x1 + τ, · · · , xm + τ),

T is said to be stationary or homogeneous. For a stationary random field T ,
we can show ET (x) = ET (0) and R(x, y) = f(x − y) for some function f .
Although the converse is not always true, such a case is not often encountered
in practical applications [135] so we may equate the stationarity with the
condition

ET (x) = ET (0), R(x, y) = f(x− y).

A special case of stationary fields is an isotropic field which requires the co-
variance function to be rotation invariant, i.e.

R(x, y) = f(‖x− y‖)

for some function f . ‖ · ‖ is the geodesic distance in the underlying manifold.

Gaussian Fields. An important class of random fields is Gaussian fields.
A random vector T = (T1, · · · , Tm) is multivariate normal if

∑m
i=1 ciTi is

Gaussian for every possible choice of ci. Similarly, a random fields T is a
Gaussian random field if T (x1), · · · , T (xm) are multivariate normal for every
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(x1, · · · , xm) ∈ Rm. An equivalent definition is as follows. T is a Gaussian ran-
dom field if the finite joint distribution Fx1,··· ,xm(z1, · · · , zm) is a multivariate
normal for every (x1, · · · , xm). T is a mean zero Gaussian field if ET (x) = 0
for all x. Because any mean zero multivariate normal distribution can be com-
pletely characterized by its covariance matrix, a mean zero Gaussian random
field T can be similarly determined by its covariance function R. Two fields
T and S are independent if T (x) and S(y) are independent for every x and
y. For mean zero Gaussian fields T and S, they are independent if and only
if the cross-covariance function

R(x, y) = E
[
T (x)T (y)

]
vanishes for all x and y.

The Gaussian white noise is a Gaussian random field with the Dirac-delta
function δ as the covariance function. Note the Dirac delta function is defined
as (x) =∞, x = 0, (x) = 0x 6= 0 and

∫
δ(x) = 1. Numerically we can simulate

the Dirac delta function as the limit of the sequence of Gaussian kernel Kσ

when σ → ∞. The Gaussian white noise is simulated as independent and
identical Gaussian random variable at each voxel.

Derivative and Integration of Fields. Let G be a collection of Gaussian
random fields. For given X,Y ∈ G, we have c1X + c2Y ∈ G again for all c1
and c2. Therefore, G forms an infinite-dimensional vector space. Not only the
linear combination of Gaussian fields is again Gaussian but also the derivative
and integration of random fields are Gaussian. To see this, we define mean-
square convergence. A sequence of random fields Th, indexed by h converges
to T as h→ 0 in mean-square if

lim
h→0

E
∣∣Th − T ∣∣2 = 0.

We will denote the convergence as

lim
h→0

Th = T.

Note that the convergence in mean-square implies the convergence in mean.
This can be seen from

E
∣∣Th − T ∣∣2 = V

[
Th − T

]2 +
(
E|Th − T |

)2
.

Now let Th → T in mean square. Each term in the right hand side should also
converges to zero proving the statement. Now we define the derivative of field
in mean square sense as

dT (x)
dx

= lim
h→0

T (x+ h)− T (x)
h

.

Note that if T (x) and T (x+h) are Gaussian random fields, T (x+h)−T (x) is
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again Gaussian, and hence the limit on the right hand side is again Gaussian. If
R is the covariance function of the mean zero Gaussian field T , the covariance
function of its derivative field is given by

E
[dT (x)

dx

dT (y)
dy

]
=
∂2R(x, y)
∂x∂y

.

We define the integration of a random field as the limit of Riemann sum.
Let ∪ni=1Mi be a partition of M, i.e. M = ∪ni=1Mi and Mi ∩ Mj = ∅ if
i 6= j. Let xi ∈ Mi and µ(Mi) be the volume of Mi. Then we define the
integration of field T as∫

M
T (x) dx = lim

n∑
i=1

T (xi)µ(Mi),

where the limit is taken as µ(Mj)→ 0 for all j. When we integrate a Gaussian
field, it is the limit of a linear combination of Gaussian random variables so
it is again a Gaussian random variable. In general, any linear operation on
Gaussian fields will result in Gaussian fields.

Other Fields. As in the case of Gaussian random variables, we can use
Gaussian fields to construct new random fields such as χ2, t, F and Hotelling’s
T 2 fields, all of which are extensively studied [25, 134, 133, 128]. For example,
the χ2-field with m degrees of freedom is defined as

T (x) =
m∑
i=1

X2
i (x),

where X1, · · · , Xm are independent, identically distributed Gaussian fields
with zero mean and unit variance. Similarly, we can define t and F fields as
well as Hotelling’s T 2 field. The Hotelling’s T 2-statistic has been widely used
in detecting morphological changes in DBM [25, 36, 50, 69, 116]. In particular,
[25] derived the excursion probability of the Hotelling’s T 2-field and applied
it to detect gender specific morphological differences.

Inference on Fields. Statistical inferences on random fields have been usu-
ally based on the series expansion of the form:

T (x) =
∞∑
i=1

Ziφi(x), (2.1)

where φi(x) are basis functions and Zi are random variables. For a Gaussian
random field, the most well known series expansion is called the Karhunen-
Loeve expansion [42, 75, 135]. The inference on the expansion (2.1) is usually
done on the realizations of coefficients Zi [13]. In brain imaging, inference has
been based on the extrema distributions of T [5, 76] which is given by

P
(

sup
x∈M

T (x) > h
)
.
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This gives a localized inference in a sense that the thresholded region is iden-
tified as signal. On the other hand, the global inference can be done by inte-
grating the field over the region of interest M, i,e.∫

M
T (x) dµ(x),

which collapses the random field into a single random variable simplifying the
inference. Details on the statistical inference will be given in the subsequent
sections.

2.2 Multiple Comparisons

Given functional measurement Y , we have model

Y (x) = µ(x) + ε(x)

where µ is unknown signal to be estimated and ε is a zero mean unit variance
Gaussian field. We further assume x ∈M ⊂ Rn. In brain imaging, one of the
most important problem is that of signal detection, which can be stated as
the problem of identifying the regions of statistically significance. So it can be
formulated as an inference problem

H0 : µ(x) = 0 for all x ∈M vs. H1 : µ(x) > 0 for some x ∈M.

Let
H0(x) : µ(x) = 0

at a fixed point x. Then the null hypothesis H0 is a collection of multiple
hypotheses H0(x) over all x. Therefore, we have

H0 =
⋂
x∈M

H0(x).

We may assume thatM is the region of interest consisting of the finite number
of voxels. We also have the corresponding point-wise alternate hypothesis

H1(x) : µ(x) > 0

and the alternate hypothesis H1 is constructed as

H1 =
⋃
x∈M

H0(x).

If we use Z-statistic as a test statistic, for instance, we will reject each H0(x) if
Z > h for some threshold h. So at each fixed x, for level α = 0.05 test, we need
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to have h = 1.64. However, if we threshold at α = 0.05, 5% of observations are
false positives. Note that the false positives are pixels where we are incorrectly
rejecting H0(x) when it is actually true. However, this is the false positives
related to testing H0(x). For determining the true false positives associated
with testing H0, we need to account for multiple comparisons. The type-I error
is the probability of rejecting the null hypothesis (there is no signal) when the
alternate hypothesis (there is signal) is true. The type-I error is also called
the family-wise error rate (FWER) and given by

α = P ( reject H0 | H0 true )
= P ( reject some H0(x) | H0 true )

= P
( ⋃
x∈M
{Y (x) > h}

∣∣∣ EY = 0
)
. (2.2)

Unfortunately, Y (x) is correlated over x and it makes the computation of
type-I error almost intractable for random fields other than Gaussian.

Bonferroni Correction. One standard method for dealing with multiple
comparisons is to use the Bonferroni correction. Note that the probability
measure is additive so that for any event Ej , we have

P
( ∞⋃
j=1

Ej

)
≤
∞∑
j=1

P (Ej).

This inequality is called Bonferroni inequalities and it has been used in the
construction of simultaneous confidence intervals and multiple comparisons
when the number of hypotheses are small. From (2.2), we have

α = P
( ⋃
x∈M
{Y (x) > h}

∣∣∣ EY = 0
)

(2.3)

≤
∑
x∈M

P
(
Y (xj) > h | EY = 0

)
(2.4)

So by controlling each type-I error separately at

P
(
Y (xj) > h | EY = 0

)
<

α

#M

we can construct the correct level α test. Here #M is the number of voxels.
The problem with the Bonferroni correction is that it is too conservative.

The Bonferroni inequality (2.4) becomes exact when the measurements across
voxels are all independent, which is unrealistic. Since the measurements are
expected to be strongly correlated across voxels, we have highly correlated
statistics. So in a sense, we have less number of comparisons to make.
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2.3 Random Fields Theory

We can obtain less conservative estimate for (2.2) using the random field
theory. Assuming EY = 0, we have

α(h) = P
( ⋃
x∈M
{Y (x) > h}

)
= 1− P

( ⋂
x∈M
{Y (x) ≤ h}

)
= 1− P

(
sup
x∈M

Y (x) ≤ h
)

= P
(

sup
x∈M

Y (x) > h
)
. (2.5)

In order to construct the α-level test corresponding to H0, we need to know
the distribution of the supremum of the field Y . The corresponding p-value
based on the supremum of the field, i.e. supx∈M Y , is called the corrected p-
value to distinguish it from the usual p-value obtained from the statistic Y .
Note that the p-value is the smallest α-level at which the null hypothesis H0

is rejected.
Analytically computing the exact distribution of the supremum of random

fields is hard. If we denote Z = supx∈M Y (x) and FZ to be the cumulative
distribution of Z, for the given given α = 0.05, we can compuate h = 1 −
F−1
Z (α). Then the region of statistically significant signal is localized as {x ∈
M : Y (x) > h}.

The distribution of supremum of Brownian motion is somewhat simple
due to its independent increment properties. However, for smooth random
field, it is not so straightforward. Read [3] for an overview of computing the
distribution of the supremum of smooth fields.

Consider 1D smooth stationary Gaussian random process Y (x), x ∈M =
[0, 1] ⊂ R. Let Nh to be the number of times Y crosses over h from below
(called upcrossing) in [0, 1]. Then we have

P
(

sup
x∈[0,1]

Y (x) > h
)

= P (Nh ≥ 1 or Y (0) > h)

≤ P (Nh ≥ 1) + P (Y (0) > h)
≤ ENh + P (Y (0) > h).

If R is the covariance function of the field Y , we have

R(0) = σ2 = EY 2(x).

It can be shown that from Rice formula [4, 101],

ENh =
1
π

(−R′′(0)
R(0)

)1/2

exp
(
h2

2σ2

)
.
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Also note that P (Y (0) > h) = 1−Φ(hσ ) where Φ is the cumulative distribution
function of the standard normal. Then from the inequality that bounds the
cumulative distribution of the standard normal [45], we have(

1− σ2

h2

) σ√
2πh

e−h
2/2σ2 ≤ 1− Φ

(h
σ

)
≤ σ√

2πh
e−h

2/2σ2

So

P
(

sup
x∈[0,1]

Y (x) > h
)
≤
[
c1 +

c2√
2πh

]
e−h

2/2σ2

for some c1 and c2. In fact we can show that

P
(

sup
x∈[0,1]

Y (x) > h
)

=
[
c1 +

c2
h

+O(h−2)
]
e−h

2/2σ2
.

Poisson Clumping Heuristic. To extend the Rice formula to higher dimen-
sion, we need a different mathematical machinery. For this method to work,
the random field Y to be sufficiently smooth and isotropic. The smoothness
of a random field corresponds to the random field being differentiable. There
are very few cases for which exact formulas for the excursion probability (2.5)
is known [2]. For this reason, approximating the excursion probability is nec-
essary for most cases.

From the Poisson clumping heuristic [6],

P
(

sup
x∈M

Y (x) < h
)
≈ exp

(
− ‖M‖

E‖Ah‖
P
(
Y (x) ≥ h

))
,

where ‖ · ‖ is the Lebesgue measure of a set and the random set

Ah = {x ∈M : Y (x) > h}

is called the excursion set above the threshold h. This approximation involves
unknown E‖Ah‖, which is the mean clump size of the excursion set. The dis-
tribution of ‖Ah‖ has been estimated for the case of Gaussian [6], χ2, t and F
fields [23] but for general random fields, no approximation is available yet.

2.4 Euler Characteristic Approach

An alternate approximation based on the expected Euler characteristic (EC)
of Ah is also available. The Euler characteristic approach reformulates the
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geometric problem as a topological problem. Read [1], [26], [24], [113] and
[129] for an overview of the Euler characteristic method.

For sufficiently high threshold h, it is known that

P
(

sup
x∈M

Y (x) > h
)
≈ Eχ(Ah) =

N∑
d=0

µd(M)ρd(h) (2.6)

where µd(M) is the d-th Minkowski functional or intrinsic volume of M and
ρd is the d-th Euler characteristic (EC) density of Y [130]. For details on
intrinsic volume, read [105]. The expansion (2.6) also holds for non-isotropic
fields but we will not pursue it any further. Compared to other approxima-
tion methods such as the Poisson clump heuristic and the tube formulae, the
advantage of using the Euler characteristic formulation is that a simple ex-
act expression can be found for E χ(Ah). Figure ?? and Figure ?? show how
χ(Ah) and E χ(Ah) change as h increases.

Intrinsic volume. The d-th intrinsic volume of M is a generalization of
d-dimensional volume. Note that µ0(M) is the Euler characteristic of M.
µN (M) is the volume of M while µN−1(M) is half the surface area of M.
There are various techniques for computing the intrinsic volume [113]. The
methods depend on the smoothness of the underlying manifold M. For a
solid sphere with radius r, the intrinsic volumes are µ0 = 1, µ1 = 4r, µ2 =
2πr2, µ3 = 4

3πr
3. For a 3D box of size a × b × c, the intrinsic volumes are

µ0 = 1, µ1 = a + b + c, µ2 = ab + bc + ac, µ3 = abc. In general, the intrinsic
volume can be given in terms of a curvature matrix. Let K∂M be the curvature
matrix of ∂M and detrd(K∂M) be the sum of the determinant of all d × d
principal minors of K∂M. For d = 0, · · · , N − 1 the Minkowski functional
µd(M) is defined as

µd(M) =
Γ(N−i2 )

2π
N−i

2

∫
∂M

detrN−1−d(K∂M) dA,

and µN (M) = ‖M‖, the Lebesgue measure of M.
For nonregular jagged shapes such as the 2D corpus callosum shape M,

the intrinsic volume can be estimated in the following fashion. Treating pixels
inside M as points on a lattice, let V be the number of vertices that forms
the corners of pixels, E be the number of edges connecting each adjacent lat-
tice points and F be the number of faces formed by four connected edges.
We assume the distance between the adjacent lattice points is δ in all direc-
tions. Then µ0 = V − E + F, µ1 = (E − 2F )δ, µ2 = Fδ2 [132, 30]. To find
the number of edges and pixels contained in M, we start from an initial face
(pixel) somewhere in the corpus callosum and add one face at a time while
counting the additional edges and faces. In this fashion, we can grow a graph
that will eventually contains all the pixels that form the corpus callosum.
Figure ?? shows few possible configurations of adding a pixel (black) to the
existing graph (gray pixels). A similar approach for computing the intrinsic
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volume for jagged irregular shapes has been implemented in FMRISTAT pack-
age (http://www.math.mcgill.ca/keith/fmristat).

EC-density. The d-th EC-density is given by

ρd(h) = E
[
(Y > h) det(−Ÿd)|Ẏd = 0

]
P (Ẏd = 0),

where dot notation indicates partial differentiation with respect to the first d
components. The subscript d represents the first d components of Y . Compu-
tation of this conditional expectation is nontrivial other than Gaussian fields.
For zero mean and unit variance Gaussian field Y , we have for instance

ρ0 = P (Y > h) = 1− Φ(h)

ρ1 = λ1/2 e
−h2/2

√
2π

ρ2 = λh
e−h

2/2

√
2π

ρ3 = λ3/2(h2 − 1)
e−h

2/2

√
2π

,

where λ measures the smoothness of fields, defined as the variance of the
derivative of component of Y . The exact expression for the EC density ρd is
available for other random fields such as t, χ2, F fields [128], Hotelling’s T 2

fields [25] and scale-space random fields [108]. In each case, the EC density
ρd is proportional to c

d
2 and it changes depending on the smoothness of the

field.
If X1, · · · , Xα, Y1, · · · , Yβ are i.i.d. stationary zero mean unit variance

Gaussian fields. Then F -field with α and β degrees of freedom is given by

F (x) =

∑α
j=1X

2
j (x)/α∑β

j=1 Y
2
j (x)/β

.

To avoid singularity, we need to assume the total degrees of freedom α+β � N
to be sufficiently larger than the dimension of space [128]. The EC-density for
F -field is then given by

ρ0 =
∫ ∞
h

Γ(α+β
2 )

Γ(α2 )Γ(β2 )
α

β

(
αx

β

) (α−2)
2
(

1 +
αx

β

)− (α+β)
2

dx,

ρ1 = λ1/2 Γ(α+β−1
2 )2

1
2

Γ(α2 )Γ(β2 )

(
αh

β

) (α−1)
2
(

1 +
αh

β

)− (α+β−2)
2

,

ρ2 = λ
Γ(α+β−2

2 )

Γ(α2 )Γ(β2 )

(
αh

β

) (α−2)
2
(

1 +
αh

β

)− (α+β−2)
2

×
[
(β − 1)

αh

β
− (α− 1)

]
.
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If the random field Y is given as the convolution of a smooth kernel
Kh(x) = K(x/h)/hN with a white Gaussian noise [108, 131], the covariance
matrix of Ẏ = dY/dx is given by

Var(Ẏ ) =

∫
RN K̇(xh )K̇t(xh ) dx
h2
∫

RN K
2(xh ) dx

.

Applying it to a Gaussian kernel K(x) = (2π)−n/2e−‖x‖
2/2 gives c =

Var(Ẏ1) = 1/(2h2). In terms of the full width at half maximum (FWHM)
of the kernel Kh, c = 4 ln 2/FWHM2.

2.5 Power and Sample Size

Given the null hypothesis H0 and the alternate hypothesis H1 on parameters
of an underlying statistical model, let us define what is the power of a test
statistic. The probabilities of type-I (α) and type-II (β) errors are defined
respectively as:

α = P (Type I error)
= P (reject H0 | H0 true).

β = P (Type II error)
= P (not reject H0 | H0 false )
= 1− P (reject H0 | H1 true).

Then the power of the test is defined to be 1− β.

Power = P (reject H0 | H1 ture).

When the test procedure has the power of 0.8, it implies that we can
correctly reject the null hypothesis H0 80% of the time when the alternate
hypothesis H1 is true. The sample size computation is then based on power.
We are usually interested in how many samples we need to obtain a specific
power level.

Consider two samples X1, · · · , Xn1 ∼ N(µ1, σ
2) and Y1, · · · , Yn2 ∼

N(µ2, σ
2). We are interested in testing

H0 : µ1 − µ2 = 0 vs. H1 : µ1 − µ2 = cσ 6= 0.

The constant c represent the mean difference with respect to the standard
deviation.
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For a test statistic, we use the t-statistic with the equal variance assump-
tion:

T =
X̄ − Ȳ − (µ1 − µ2)
Sp
√

1/n1 + 1/n2

, (2.7)

where X̄ and Ȳ are the sample means and S2
p is the pooled sample variance.

If the sample variance of the i-th group is denoted by S2
i , the pooled sample

variance is given by

S2
p =

(n1 − 1)S2
1 + (n2 − 1)S2

2

n1 + n2 − 2
.

It can be shown that the test statistic T is distributed as

T ∼ tn1+n2−2,

the student t-distribution with n1 + n2 − 2 degrees of freedom.
For computing the power, the α-level has to be specified first. Under H0,

the rejection region corresponding to the α-level is given by

|X̄ − Ȳ |
Sp
√

1/n1 + 1/n2

> tn1+n2−2,α/2,

where tn1+n2−2,α/2 is the quantile satisfying

P (T ≥ tn1+n2−2,α/2) = α/2.

Here we assumed σ ≈ Sp.
Under H1, Xi ∼ N(µ1, σ

2) and Yi ∼ N(µ1 + cσ, σ2). So it follows

T =
X̄ − Ȳ − cσ

Sp
√

1/n1 + 1/n2

∼ tn1+n2−2.

Then the power is given by

Power = P
(
− tn1+n2−2,α/2 <

X̄ − Ȳ
Sp
√

1/n1 + 1/n2

< tn1+n2−2,α/2

∣∣∣H1

)
= P

(
− tn1+n2−2,α/2 −

c√
1/n1 + 1/n2

< T < tn1+n2−2,α/2 −
c√

1/n1 + 1/n2

)
.

For sufficiently large n1 and n2, we may assume T ∼ N(0, 1). Let Φ be the
cumulative distribution for the standard normal distribution. Then our power
is approximated as

Power(n1, n2) = 1+Φ
(
−zα/2−

c√
1/n1 + 1/n2

)
−Φ
(
zα/2−

c√
1/n1 + 1/n2

)
.

Assuming n = n1 = n2, we can plot the power as a function of the sample
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FIGURE 2.1
Power vs. sample size for the two sample t test.

size. For example, in order to obtain power of 0.8 for a α = 0.05 test in
differentiating the difference µ1 − µ2 = 0.2σ, we need n = n1 = n2 = 393. See
Figure 2.1 for the power vs. sample size plot.

So far, the power computation is based on samples for scalar measure-
ments. Assume we have two functional measurements X1(t), · · · , Xn1(t) and
Y1(t), · · · , Yn2(t) over continuous index t ∈ M. X

i
and Xj can be then mod-

eled as random fields overM. At each fixed t, we have the same test statistic
T (t) given in (2.7).

The usual point-wise hypotheses are given by

H0(t) : µ1(t)− µ2(t) = 0 vs. H1(t) : µ1(t)− µ2(t) = cσ > 0

for each fixed t. Instead of the point-wise inference, what we need is a global
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inference for the whole parameter space M. The usual global hypotheses ac-
counting for multiple comparisons are then given by

J0 : µ1(t)−µ2(t) = 0 for all t ∈M vs. J1 : µ1(t)−µ2(t) = cσ > 0 for some t ∈M.

The relationship between the point-wise hypotheses H0(t), H1(t) and the
global hypotheses J0, J1 are

J0 =
⋂
t∈M

H0(t), J1 =
⋃
t∈M

H1(t).

Type-I error. In order to compute the power over M, it is necessary to
determine the type-I error first. Note that we reject J0 if T (t) > h for some
thresholding h for all t ∈M. This is equivalent to the event supt∈M T (t) > h.
Hence, the type-I error computation requires knowing the distribution of the
random variable supt∈M T (t) which can be very involving. The type-I error
over M is given by

α = P
(

sup
t∈M

T (t) > t∗α

)
,

where t∗α is the quantile corresponding to the random variable supt∈M T (t). If
necessary, the qauntile can be determined numerically using the permutation
test.

Type-II error. Let

T (t) =
X̄(t)− Ȳ (t)

Sp(t)
√

1/n1 + 1/n2

.

Under J0, this is a t-random field with n1 +n+ 2− 2 degrees of freedom. The
rejection region of J0 corresponding to the α level is given by

sup
t∈M

T (t) > t∗α.

Under J1, we have

Xi(t) ∼ N(µ1, σ
2) and Yi(t) ∼ N(µ1 + cσ, σ2)

for some region M0 ⊂M. In other region M/M0, we simply have

Xi(t), Yi(t) ∼ N(µ1, σ
2).

To compute the power over the whole space M, we need the conditional
probability P ( reject J0 | J1 true ). Conditioning on J1 introduces two distinct
possibilities (M0 and M/M0) so the power computation over the whole M
is slightly complicated. Figure 2.2 shows the event when J1 is true. In M0,
we have

T0(t) = T (t)− c√
1/n1 + 1/n2

∼ tn1+n2−2
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FIGURE 2.2
Under J1, there exists a nonempty region M0 where the means of Xi and Yi
are different.

pointwisely. Here we assumed the equal variance field, i.e. Sp(t) = σ. On the
other hand, in the region M/M0, we have

T (t) ∼ tn1+n2−2

pointwisely.
Hence the overall power over M is given by

P = P
(

max
[

sup
t∈M0

T0(t) +
c√

1/n1 + 1/n2

, sup
t∈M/M0

T (t)
]
> t∗α

)
.

Since the analytic derivation of the exactly probability is intractable, we
will approximate the power by assuming the random fields T0 restricted toM0

and T restricted to M/M0 to be independent. The algebraic manipulation
can show that the power is then approximately

P = P
(

sup
t∈M0

T0(t) > t∗α−
c√

1/n1 + 1/n2

)
+P
(

sup
t∈M

T (t) > t∗α−
c√

1/n1 + 1/n2

)
.

by bounding it. The algebraic manipulation can show that the power is
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bounded between

P
(

sup
t∈M0

T0(t) > t∗α−
c√

1/n1 + 1/n2

)
< P ≤ P

(
sup
t∈M

T (t) > t∗α−
c√

1/n1 + 1/n2

)
.

For sufficiently large n1 and n2, we can approximate the t-fields T0 and
T using the Gaussian field Z with zero mean and unit variance. The tail
distribution of the supremum of Z field in R2 is given approximately as [133]:

Ψ(t,M) = P
(

sup
t∈M

Z(t) > t
)

=
µ(M)

FWHM2

4 ln 2
(2π)3/2

t exp(−t2/2),

where µ(M) is the surface area of and FWHM is the full-width-at-half-
maximum of signal or smoothing kernel. Hence the power is bounded by

Ψ
(
t∗α −

c√
1/n1 + 1/n2

,M0

)
≤ P ≤ Ψ

(
t∗α −

c√
1/n1 + 1/n2

,M
)
.

For instance, in the cortical thickness analysis, often used FWHM is 20mm
kernel and the area of the outer cortical surface is 302180mm2 [34]. Assuming
n = n1 = n2, we can plot the power as a function of the sample size (Figure
2.3). In order to obtain the power of 0.8 for a α = 0.05(corrected) test in
differentiating µ1 − µ2 = 0.2σ, we need n1 = n2 in each group.
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FIGURE 2.3
Power function bounded by the lower and upper bounds.
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3

Spherical Harmonic Representation

NOTE: MATLAB COMPONENTS NOT ADDED YET.

There are extensive literature on local cortical shape modeling and analysis
[32, 46, 70, 114, 118, 77, 80, 86]). The medial representation [95] has been
also successfully used in modeling various subcortical structures including the
cross sectional images of the corpus callosum [68], hippocampus and amygdala
complex [110], ventricle and brain stem [95]. In the medial representation, the
binary object is represented using the finite number of atoms and links that
connect the atoms together to form a skeletal representation of the object. The
medial representation is mainly used with the principal component analysis
type of approach for shape classification and group comparison.

Unlike the medial representation, which is in a discrete representation,
there is a continuous parametric approach called the spherical harmonic rep-
resentation [53, 60, 72, 107]. The spherical harmonic representation has been
mainly used as a data reduction technique for compressing global shape fea-
tures into small number of coefficients. The main global geometric features are
encoded in low degree coefficients while the noise will be in high degree spher-
ical harmonics [60]. The method has been used to model various subcortical
structures such as ventricles [53], hippocampi [107] and cortical surfaces [31].
The spherical harmonics have global support. So the spherical harmonic coef-
ficients contain only the global shape features and it is not possible to directly
obtain local shape information from the coefficients only. However, it is still
possible to obtain local shape information by evaluating the representation at
each fixed point, which gives the smoothed version of the coordinates of sur-
faces. In this fashion, the spherical harmonic representation can be viewed as
mesh smoothing [31]. Instead of using the global basis of spherical harmonics,
there have been attempts of using the local wavelet basis for parameterizing
cortical surfaces [88, 136].

Other shape modeling approaches include distance transforms [78], defor-
mation fields [85] obtained by warping individual substructures to a template,
and the particle-based method [27]. A distance transform is a function that
for each point in the image is equal to the distance from that point to the
boundary of the object [56]. The distance map approach has been applied in
classifying a collection of hippocampus [56]. The deformation fields based ap-
proach has been somewhat popular and has been applied to modeling whole
3D brain volume [9, 33, 50], cortical surfaces [34, 117], hippocampus [70] and

41
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cingulate gyrus [38]. The particle-based method uses a nonparametric, dy-
namic particle system to simultaneously sample object surfaces and optimize
correspondence point positions [27].

In this chapter, we presented the unified mathematical theory of the
Fourier representation which encompasses the spherical harmonic representa-
tion as a special case in R3. The representation can be used for cortical surface
parameterization, smoothing and registration in a unified Hilbert space frame-
work. The weighted version of the Fourier representation is also developed to
address many shortcomings of the traditional spherical harmonic representa-
tion [31]. The weighted version differs from the traditional spherical harmonic
representation in many ways. Although the truncation of the series expansion
in the spherical harmonic representation can be viewed as a form of smooth-
ing, there is no direct equivalence to the full width at half maximum (FWHM)
usually associated with kernel smoothing. So it is difficult to relate the unit
of FWHM widely used in brain imaging to the degree of spherical harmonic
representation. On the other hand, the weighted representation can easily re-
late to FWHM of smoothing kernel so we have a clear sense of how much
smoothing we are performing beforehand. The traditional representation suf-
fers from the Gibbs phenomenon (ringing artifacts) [51] that usually happens
in representing rapidly changing or discontinuous data with smooth periodic
basis. The weighted representation can substantially reduce the amount of
Gibbs phenomenon by weighting the coefficients of the spherical harmonic
expansion.

3.1 Fourier Representation

Consider a compact differentiable manifoldM∈ Rd that will be our anatom-
ical object of interest. Let L2(M) be the space of square integrable functions
in M with inner product

〈g1, g2〉 =
∫
M
g1(p)g2(p) dµ(p), (3.1)

where µ is the Lebegue measure such that µ(M) is the total volume of M.
The norm ‖ · ‖ is defined as

‖g‖ = 〈g, g〉1/2.
The partial differential operator L is self-adjoint if

〈g1,Lg2〉 = 〈Lg1, g2〉
for all g1, g2 ∈ L2(M). The eigenvalues λj and eigenfunctions ψj of the oper-
ator L are obtained by solving

Lψj = λjψj . (3.2)
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Without the loss of generality, we can order eigenvalues

0 = λ0 < λ1 ≤ λ2 ≤ · · ·

and make the eigenfunctions to be orthonormal with respect to the inner
product (3.1).

Let Hk be the subspace

Hk = {
k∑
j=0

βjψj(p) : βj ∈ R} ⊂ L2(M),

which is spanned by the finite number of basis up to degree k. We are interested
in finding a function h ∈ Hk that is the closest to f in L2-norm. Obviously,
from the property of Hilbert space L2(M), we have

k∑
j=0

fjψ(p) = arg min
h∈H
‖f − h‖2,

where fj = 〈f, ψj〉 are Fourier coefficients. There are three main methods for
computing Fourier coefficients. The first method numerically integrates the
Fourier coefficients over a high resolution triangle mesh [28]. Although this
approach is the simplest to implement numerically and possibly the most ac-
curate, the computation is extremely slow, due to the brute force nature of the
technique. This is not a recommended approach. The second method is based
on the fast Fourier transform (FFT) [20, 60]. The drawback of FFT is the need
for a predefined regular grid system so if the mesh topology is different for
different surfaces, a time consuming interpolation is needed. Cortical meshes
obtained from FreeSurfer [46] produces topologically different meshes for dif-
ferent subjects so FFT is also not recommended. The third method is based
on solving a system of linear equations [53, 107, 106] in a least squares fashion.
This is the most widely used numerical technique in the spherical harmonic
representation literature. However, the direct application of the least squares
estimation is not desirable when the size of the linear equation is extremely
large. For extremely large least squares problems, iterative strategies such as
the iterative residual fitting (IRF) is required [31].

Suppose f is observed at the finite number of points p1, · · · , pn ∈M. Then
we wish to find h ∈ Hk that minimizes the sum of the squared distance

‖f − h‖2 ≈
n∑
i=1

[
f(pi)−

k∑
j=0

βjψj(pi)
]2
. (3.3)

The minimum of (3.3) is obtained when

f(pi) =
k∑
j=0

βjψj(pi), i = 1, · · · , n (3.4)
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The equation (3.4) is referred as the normal equation and is usually solved by
matrix inversion as follows. Let f = (f(p1), · · · , f(pn))′ and β = (β0, · · · , βk)′.
Also let

Ψ =

 ψ0(p1) · · · ψk(p1)
...

. . .
...

ψ0(pn) · · · ψk(pn)


be a n×(k+1) matrix consisting of basis functions evaluated at mesh vertices.
Then (3.4) can be rewritten in the following matrix form:

f = Ψβ. (3.5)

The solution of the matrix equation is

β = (Ψ′Ψ)−Ψ′f, (3.6)

where (Ψ′Ψ)− is the generalized inverse. The problem with this widely used
formulation is that the size of the matrix Ψ can be fairly large and for very
large n and k. So it may become impractical to perform matrix operation (3.6)
directly. This is mainly true for FreeSurfer [46] which produces more than
200, 000 nodes for each cortical hemisphere. This computational bottleneck
can be overcome by breaking the least squares problem in the subspace Hk
into smaller subspaces using the IRF-algorithm [106, 31].

3.2 Weighted Fourier Representation

The weighed Fourier representation generalizes the usual Fourier representa-
tion with additional exponential weights. This new representation is both a
global hierarchical parameterization and an explicit data smoothing technique
formulated as a solution to a self-adjoint partial differential equation (PDE).
The exponentially decaying weights make the representation converges faster
and reduce the Gibbs phenomenon (ringing artifacts) significantly [51]. When
the self-adjoint operator L is the Laplace-Beltrami operator, the representa-
tion becomes heat kernel smoothing [31].

Consider a Cauchy problem

∂g

∂σ
+ Lg = 0, g(p, σ = 0) = f(p). (3.7)

The initial functional data f(p) can be further stochastically modeled as

f(p) = η(p) + ε(p), (3.8)

where ε is a mean zero Gaussian random field and η is the unknown signal
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to be estimated. The partial differential equation (3.7) diffuses initial data f
over time and the solution is given as the estimate for η. The time σ controls
the amount of smoothing and will be termed as the bandwidth. Using the
eigenfunctions (3.2), the unique solution to equation (3.7) is given by

g(p, σ) =
∞∑
j=0

e−λjσfjψj(p) (3.9)

with Fourier coefficients fj = 〈f, ψj〉. For each fixed σ, g has expansion

g(p, σ) =
∞∑
j=0

cj(σ)ψj(p). (3.10)

Substitute equation (3.10) into (3.7). Then we obtain

∂cj(σ)
∂σ

+ λjcj(σ) = 0. (3.11)

The solution of equation (3.11) is given by cj(σ) = bje
−λjσ. So we have

solution

g(p, σ) =
∞∑
j=0

bje
−λjσψj(p).

At σ = 0, we have

g(p, 0) =
∞∑
j=0

bjψj(p) = f(p).

The coefficients bj must be the Fourier coefficients 〈f, ψj〉 and this proves
our claim. The solution (3.9) decreases exponentially as time σ increases and
smoothes out high spatial frequency noise much faster than low frequency
noise. This is the basis of many of PDE-based image smoothing methods.
Partial differential equations involving self-adjoint linear partial differential
operators such as the Laplace-Beltrami operator or iterated Laplacian have
been widely used in medical image analysis as a way to smooth either scalar
or vector data along anatomical boundaries [7, 20, 21, 35]. These methods
directly solve the PDE using standard numerical techniques such as the finite
difference method or the finite element method. However, the main problem
with directly solving PDE is the numerical instability and the complexity of
setting up the numerical scheme.

Heat kernel Kσ is approximated linearly using Gaussian kernel in the tan-
gent space. This process bounds to compound the linearization error. The lin-
earization problem can be avoided if we can determine heat kernel precisely.
Motivated by the solution (3.9), we define the weighted Fourier representation
of f as

∞∑
j=0

e−λjσfjψj(p). (3.12)
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By rearranging the inner product in (3.12), we have

∞∑
j=0

e−λjσfjψj(p) =
∞∑
j=0

e−λjσψj(p)
∫
M
f(q)ψj(q) dµ(q)

=
∫
M
Kσ(p, q)f(q) dµ(q)

with the positive definite symmetric kernel Kσ given by

Kσ(p, q) =
∞∑
j=0

e−λjσψj(p)ψj(q).

This shows that the solution of the Cauchy problem (3.7) can be interpreted
as kernel smoothing

Kσ ∗ f =
∞∑
j=0

e−λjσfjψj(p).

When the differential operator L = ∆, the Laplace-Beltrami operator, the
Cauchy problem (3.7) becomes an isotropic diffusion equation. For this par-
ticular case, Kσ is called the heat kernel with bandwidth σ [32, 28]. For an
arbitrary cortical manifold, the basis functions ψj can be computed and the
exact shape of heat kernel can be determined numerically. Although it can
be done by setting up a huge finite element method [98], this is not a trivial
numerical computation. A simpler approach is to use the first order approxi-
mation of the heat kernel for small bandwidth and iteratively apply it up to
the desired bandwidth [32].

The weighted Fourier representation can be reformulated as a kernel regres-
sion problem [44]. We restrict the function space L2(M) to a finite subspace
that is more useful in numerical implementation. Let

Hk = {
k∑
j=0

βjψj(p) : βj ∈ R}

be the subspace spanned by basis ψ0, · · · , ψl. We claim that the k-th degree
expansion of (3.12) satisfies

k∑
j=0

e−λjσfjψj = arg min
h∈Hk

∫
M

∫
M
Kσ(p, q)

∣∣∣f(q)− h(p)
∣∣∣2 dµ(p) dµ(q).

This can be seen by letting h =
∑k
j=0 βjψj(p). Let the inner integral be

I =
∫
M
Kσ(p, q)

∣∣∣f(q)−
k∑
j=0

βjψ(p)
∣∣∣2 dµ(q).
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Simplifying the expression, we obtain

I =
k∑
j=0

k∑
j′=0

ψj(p)ψj′(p)βjβj′ − 2Kσ ∗ f(p)
k∑
j=0

ψj(p)βj +Kσ ∗ f2.

Since I is an unconstrained positive semidefinite qudratic program (QP) in βj ,
there is no unique global minimizer of I without additional linear constraints.
Integrating I further with respect to µ(p), we collapses the QP to a positive
definite QP, which yields a unique global minimizer as∫

M
I dµ(p) =

k∑
j=0

β2
j − 2

k∑
j=0

e−λjσfjβj + const.

The minimum of the above integral is obtained when all the partial derivatives
with respect to βj vanish, i.e.∫

M

∂I

∂βj
dµ(p) = 2βj − 2e−λjσfj = 0

for all j. Hence
∑k
j=0 e

−λjσfjψj is the unique minimizer in Hk.
We can also show that the weighted spherical harmonic representation

is related to previously available surface-based isotropic diffusion smoothing
[7, 21, 34, 32]. When L = ∆, the weighted Fourier representation (3.9) is
the solution of the isotropic heat diffusion. Then from the property of the
generalized Fourier series, the finite expansion is the closest to the infinite
series in Hk in the least squares fashion [104]. This can be formally stated as

k∑
j=0

e−λjσfjψj = arg min
h∈Hk

‖h− h0‖,

where h0 is the solution to the isotropic heat diffusion

∂h0

∂σ
= ∆h0, (3.13)

with the initial value condition h0(p, σ = 0) = f(p) in the manifold M.

3.3 Iterative Residual Fitting Algorithm

We present an iterative technique for solving (3.5) for extremely large number
of basis k. Decompose the subspace Hk into smaller subspaces as the direct
sum:

Hk = I0 ⊕ I1 · · · ⊕ Ik,
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where subspace Il is the the projection of Hk along the k-th basis. Other way
of decomposing Hk is to use more than one basis for Il. For instance, for the
collection of spherical harmonics Ylm, at each degree l, there are 2l + 1 basis
Yl,−l, · · · , Yl,l. So we define Il as the 2l+1 dimensional subspace generated by
all l-th degree spherical harmonics. Then the algorithm estimates the Fourier
coefficients βj in each subspace Il iteratively from increasing the degree from
0 to k. Suppose we estimated the coefficients up to degree l−1 somehow. The
estimated coefficients are denoted as β̂0, · · · , β̂l−1. Then the residual rl−1 of
the fit is given by

rl−1 = f −
l−1∑
j=0

β̂jψj . (3.14)

At the next degree l, we estimate the coefficients βl by minimizing the differ-
ence between the residual rl−1 and βlψl, i.e.

β̂l = arg min
βl
‖rl−1 − βlψl‖2.

The minimization is achieved in the least squares fashion with a smaller normal
equation. Let Ψl = (ψl(p1), · · · , ψl(pn))′. Then

β̂l = (Ψ′lΨl)−1Ψ′lrl−1.

The model for given functional data f is then
∑l
j=0 β̂jψj . In this fashion,

the algorithm hierarchically builds the Fourier expansion from lower to higher
degree. To speed up the computation, we can decompose Hk such that each
subspace Ik is spanned by more than one basis if necessary. The iterative
procedure presented here is refereed to as the iterative residual fitting (IRF)
algorithm since we are iteratively fitting a linear equation to the residuals
obtained from the previous iteration [31].

For spherical harmonics, due to multiplicity, there are 2l + 1 orthonormal
basis corresponding to the l-th eigenvalue. So we can simultaneously estimate
more than one coefficient at a time. The procedure is similar to estimating one
coefficient at a time. Here we spell out the procedure for estimating the coef-
ficients in the weighted Fourier representation. Suppose we have the normal
equations

f(pj) =
k∑
l=0

l∑
m=−l

e−l(l+1)σflmYlm(pj), j = 1, · · · , n, (3.15)

where flm = 〈f, Ylm〉. We rewrite (3.15) in the matrix form as

F = [Y0, e
−1(1+1)σY1, · · · , e−k(k+1)σYk]︸ ︷︷ ︸

Y

β, (3.16)

where the column vectors are F = [f(p1), · · · , f(pn)]
′

and β′ =
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(β′0, β
′
1, · · · , β′k) with β′l = (fl,−l, fl,l). The length of the vector β is 1 + (2 · 1 +

1) + · · ·+ (2 · k + 1) = (k + 1)2. Each submatrix Yl is given by

Yl =

 Yl,−l(p1), · · · , Yl,l(p1)
...

. . .
...

Yl,−l(pn), · · · , Yl,l(pn)

 .
We may tempted to directly estimate β in least squares fashion as β̂ =
(Y′Y)−1Y′F. However, since the size of matrix Y′Y becomes (k + 1)2 ×
(k + 1)2, for large degree k, it may be difficult to directly invert the matrix.
Instead of directly solving the normal equations, we project the normal equa-
tions into a smaller subspace Il and estimate 2l+ 1 coefficients in an iterative
fashion.

At degree 0, we write F = Y0β0 + r0, where r0 is the residual vector of
estimating F in the subspace I0. Note that the residual vector r0 consists of
residuals r0(p1), · · · , r(pn). Then we estimate β0 by minimizing the residual
vector in least squares fashion:

β̂0 = (Y′0Y0)−1Y′0F =

∑n
j=1 f(pj)Y00(pj)∑n

j=1 Y
2
00(pj)

.

At degree l, we have

rl−1 = e−l(l+1)σYlβl + rl, (3.17)

where the residual vector rl−1 is obtained from the previous estimation as

rl−1 = F−Y0β̂0 · · · − e−(l−1)lσYl−1β̂l−1.

The least squares minimization of rl is then given by

β̂l = el(l+1)σ(Y′lYl)−1Y′lrl−1.

The IRF-algorithm is similar to the matching pursuit method although
they were developed independently [82]. The IRF-algorithm was developed to
avoid the computational burden of inverting a huge linear problem while the
matching pursuit method was originally developed to compactly decompose
a time frequency signal into a linear combination of pre-selected pool of basis
functions called dictionary. In the usual least squares estimation with the
design matrix Ψ of size n × k in (3.6), it is necessary to invert the k × k
matrix Ψ′Ψ. Widely used matrix inversion algorithms such as Gauss-Jordan
elimination, LU-decomposition and QR-decomposition, the running time is
O(k3) = O(l6), where k = 1+3+· · ·+2l+1 for using up to degree l [109, 66]. On
the other hand, the IRF-algorithm, applied to spherical harmonics, requires
to invert k number of submatrices of size m ×m where m = 1, 3, · · · , 2l + 1.
The total running time is then

O(13 + 33 + · · ·+ (2l + 1)3) = O(l4),
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which is a substantial reduction of running time.
In the IRF-algorithm, we minimize the residual component rl in least

squares fashion, i.e. minimizing the sum of squared residuals
∑n
j=1 r

2
l (Ωj)

over all mesh vertices. On the other hand, in the marching pursuit method,
the norm ‖Ylβl‖2 is maximized. Due to orthonormality, maximizing the norm
is equivalent to minimizing the norm of the residual ‖rl‖2 =

∫
M r2

l (p) dµ(p).
So there is a slight difference in how the residual is minimized. Although
there is no limitation not to estimate multiple coefficients simultaneously in
the matching pursuit method, [82] formulated it as the problem of estimating
one coefficient at a time rather than multiple coefficients.

In many spherical harmonic representation literature [20, 53, 60, 106, 107],
the optimal degree is simply selected based on a pre-specified error bound that
depends on the size of anatomical structure. Although increasing the degree of
the representation increases the goodness-of-fit, it also increases the number
of coefficients to be estimated quadratically. So it is necessary to find the op-
timal degree where the goodness-of-fit and the number of parameters balance
out. The stepwise model selection framework offers a way to automatically
determine the optimal degree [31].

From (3.8), we can have

f(pi) =
k−1∑
j=0

e−λjσβjψj(pi) + ε(pi), (3.18)

where ε(pi) is a zero mean Gaussian random variable. Then we determine if
adding the k-th degree terms in the (k− 1)-th degree model (3.18) is statisti-
cally significant by testing the null hypothesis

H0 : µk = 0.

Let the k-th degree sum of squared errors (SSE) be

SSEk =
n∑
i=1

r2
k(pi).

As the degree k increases, SSE keep decreasing until it flattens out. So it
is reasonable to stop the iteration when the decrease in error is no longer
significant. Figure 3.1 shows the plot of the root mean squared errors (RMSE),√

SSEk/n. Under H0, the test statistic is

F =
SSEk−1 − SSEk

SSEk−1/(n− k − 1)
∼ F1,n−k−1,

the F -distribution with 1 and n− k − 1 degrees of freedom. We compute the
F statistic at each degree and stop the IRF procedure if the corresponding
P-value first becomes bigger than the pre-specified significance α which is
usually set at 0.05 (Figure 3.2).
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3.4 Spherical Harmonics

The unit sphere S2 can be parameterized by the polar angle θ and the az-
imuthal angel ϕ:

p = (sin θ cosϕ, sin θ sinϕ, cos θ) (3.19)

with p = (θ, ϕ) ∈ [0, π]⊗ [0, 2π). The spherical Laplacian ∆ corresponding to
the parametrization (3.19) is then given by

∆ =
1

sin θ
∂

∂θ

(
sin θ

∂

∂θ

)
+

1
sin2 θ

∂2

∂2ϕ
.

There are 2l+ 1 eigenfunctions Ylm (−l ≤ m ≤ l), corresponding to the same
eigenvalue λl = l(l + 1) satisfying

∆Ylm = λlYlm.

Ylm is called the spherical harmonic of degree l and order m [37, 122]. It is
given explicitly as

Ylm =


clmP

|m|
l (cos θ) sin(|m|ϕ), −l ≤ m ≤ −1,
clm√

2
P 0
l (cos θ), m = 0,

clmP
|m|
l (cos θ) cos(|m|ϕ), 1 ≤ m ≤ l,

where clm =
√

2l+1
2π

(l−|m|)!
(l+|m|)! and Pml is the associated Legendre polynomials

of order m. Unlike many previous imaging literatures on spherical harmonics
that used the complex-valued spherical harmonics [20, 53, 60, 107], only real-
valued spherical harmonics are used throughout the book for convenience in
setting up a real-valued stochastic model.

For f, h ∈ L2(S2), we define the inner product as

〈f, h〉 =
∫ 2π

ϕ=0

∫ π

θ=0

f(p)h(p) dµ(p),

where Lebesgue measure dµ(p) = sin θdθdϕ. Then with respect to the inner
product, the spherical harmonics satisfies the orthonormal condition∫

S2
Yij(p)Ylm(p) dµ(p) = δilδjm,

where δil is the Kroneker’s delta.
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3.5 Spherical Harmonic Representation

The spherical harmonic (SPHARM) representation [18] has been applied to
subcortical structures such as the hippocampus and the amygdala [53, 60,
72, 107]. In particular, [53] used the mean squared distance (MSD) of the
SPHARM coefficients in quantifying ventricle surface shape in a twin study.
[107] used the principal component analysis technique on the SPHARM coef-
ficients of schizophrenic hippocampal surfaces in reducing the data dimension.
Recently it has begun to be applied to more complex cortical surfaces [60, 106].
[60] presented SPHARM as a surface compression technique, where the main
geometric features are encoded in the low degree spherical harmonics, while
the noises are in the high degree spherical harmonics. In the SPHARM rep-
resentation, all measurements are assigned equal weights and the coefficients
of the series expansion is estimated in the least squares fashion. On the other
hand, in the recently developed weighted version of SPHARM [31], closer
measurements are weighted more and the coefficients of the series expansion
is estimated in the weighted least squares fashion. So weighted-SPHARM is
more suitable than SPHARM when the realization of the cortical boundaries,
as triangle meshes, are noisy and possibly discontinuous.

In SPHARM, spherical harmonics are used in constructing the Fourier
series expansion of the mapping from cortical surfaces to a unit sphere. So
SPHARM is more of an interpolation technique than a smoothing technique,
and thus it will have the ringing artifacts.On the other hand, the weighted
version of SPHARM is a kernel smoothing technique given as a solution to a
self-adjoint PDE [31]. The solution to the PDE is expanded in basis functions.
In a similar spirit, [20] used the spherical harmonics in isotropic heat diffusion
via the Fourier transform on a unit sphere as a form of hierarchical surface rep-
resentation. The weighted-SPHARM offers many advantages over the previous
PDE-based smoothing techniques [7, 34]. The PDE-based smoothing methods
tend to suffer numerical instability while the weighted-SPHARM has no such
problem [7, 22, 21, 34]. Since the traditional PDE-based smoothing gives an
implicit numerical solution, setting up a statistical model is not straightfor-
ward. However, the weighted-SPHARM provides an explicit series expansion
so it is easy to apply a wide variety of statistical modeling techniques such as
the GLM [49] , principal component analysis (PCA) [107] and functional-PCA
[87, 100]. The SPHARM-based global parametrization is computationally ex-
pensive compared to the local quadratic polynomial fitting [18, 34, 39, 71, 99]
while providing more accuracy and flexibility for hierarchical representation.

LetM be a cortical surface topologically equivalent to a sphere. The unit
sphere S2 is realized as a triangle mesh and deformed to match the surface
in such a way that anatomical homology and the topological connectivity of
meshes are preserved. The cortical surfaces can be assumed to be smooth 2-
dimensional Riemannian manifolds parameterized by two parameters [40, 71].
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FIGURE 3.1
Plots of the RMSE for the weighted spherical harmonic representation with
varying σ(0.01, 0.001, 0.0001, 0). When σ = 0, we have the traditional spher-
ical harmonic representation. The cortical surfaces correspond to the 85-th
degree representation. As σ → 0, the weighed representation converges to the
traditional representation.

Based on the deformable algorithm [81] that establishes the homology between
the S2 mesh and the cortical surface, the Cartesian coordinates of the mapping
are discretely parameterized by the spherical coordinates (3.19) as

v = (v1(p), v2(p), v3(p)).

These discrete coordinate functions are further smoothed by the weighted-
SPHARM:

vi(p) =
k∑
l=0

l∑
m=−l

e−l(l+1)σf ilmYlm(p). (3.20)

Since SPHARM is a special case when σ = 0, we will simply present a model
for the weighted-SPHARM only. We model vi stochastically by assuming f ilm
to follow independent normal distribution N(µilm, σ

2
l ) for coordinate i, degree

l, and order m. This assumption is equivalent to modeling vi as the sum of
signal plus noise:

vi(p) =
k∑
l=0

l∑
m=−l

e−l(l+1)tµilmYlm(p) + εi(p),
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FIGURE 3.2
Cortical thickness projected onto the average outer cortex for various t and
corresponding optimal degree: k = 18(t = 0.01), k = 42(t = 0.001), k = 52(t =
0.0005), k = 78(t = 0.0001). The average cortex is constructed by averaging
the coefficients of the weighted-SPHARM. The highly noise first image shows
thickness measurements obtained by computing the distance between two tri-
angle meshes.

where εi is a zero mean Guassian random field with a certain isotropic covari-
ance function. A similar stochastic modeling approach has been used in [85],
where the canonical expansion of a Gaussian random field is used to model
the component of a deformation field.

The mean and the variance functions of the surface are then given by

Evi(p) =
k∑
l=0

l∑
m=−l

e−l(l+1)σµilmYlm(p), (3.21)

Vvi(p) =
k∑
l=0

l∑
m=−l

e−2l(l+1)σσ2
l Y

2
lm(p)

The total variability of the surface is then measured by∫
S2

Vvi dµ(p) =
k∑
l=0

l∑
m=−l

e−2l(l+1)σσ2
l

indicating the increase of smoothing bandwidth decreases the total variability.
If

vij(θ, ϕ) =
k∑
l=0

l∑
m=−l

e−l(l+1)σf ijlmYlm(θ, ϕ) (3.22)
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is the weighted-SPHARM for the j-th subject (1 ≤ j ≤ s), the unknown
parameters µilm and σ2

l are estimated as the sample mean and the sample
variance:

µ̂ilm =
1
s

n∑
j=1

f ijlm, (3.23)

σ̂2
l =

1
(2l + 1)(s− 1)

l∑
m=−l

s∑
j=1

(f ijlm − µilm)2.

For the numerical implementation, the iterative residual fitting (IRF) algo-
rithm can be used. The MATLAB codes are available1. For up to k = 78 degree,
there are total 3(k+1)2 = 18, 723 unknown Fourier coefficients corresponding
to the three Cartesian coordinates of a cortical surface.

The IRF-algorithm result can be validated against the analytical solution
of equation. For any arbitrary initial data of the form

f =
k∑
l=0

l∑
m=−l

αlme
l(l+1)σYlm, (3.24)

the weighted-SPHARM representation is given by

Kσ ∗ f =
k∑
l=0

l∑
m=−l

αlmYlm. (3.25)

Comparing the analytical expression (3.25) to the numerical result obtained
from the IRF-algorithm serves as the basis for validation. It is sufficient to use
a single term in (3.24) for validation. For the initial data f = el(l+1)σYlm, we
have Kσ ∗ f = Ylm. Table 3.5 shows the comparison for various degrees and
orders. The fourth column shows the mean absolute error between the theo-
retical value Ylm and the numerical result obtained from the IRF-algorithm.
The mean is taken over all mesh vertices. As expected, the mean absolute
error decreases as the degree increases. For the 78th degree with σ = 0.0001,
the error is smaller than 2 decimal places. We have also checked if 〈Ylm, Ylm〉 is
close to 1 in the last column. The estimation is accurate up to 2 decimal places
for all degrees. Table 3.5 shows that the IRF-algorithm provides sufficiently
good numerical accuracy.

3.6 Gibbs Phenomenon

The weakness of the traditional spherical harmonic representation is that
it produces the Gibbs phenomenon (ringing artifacts) for discontinuous and

1http://www.stat.wisc.edu/∼mchung/softwares/weighted-SPHARM/weighted-SPHARM.html
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The numerical accuracy of the weighted-SPHARM representation against
the analytic solution flm for various bandwidth σ.

degree l order m bandwidth σ mean absolute error 〈Ylm, Ylm〉
18 17 0 0.0077 0.9979
18 17 0.0001 0.0078 0.9979
18 17 0.0005 0.0083 0.9981
18 17 0.01 0.0575 0.9995
42 41 0 0.0064 0.9977
42 41 0.001 0.0126 0.9992
52 51 0 0.0066 0.9972
52 51 0.0005 0.0101 0.9988
78 77 0 0.0060 0.9973
78 77 0.0001 0.0068 0.9984

rapidly changing continuous measurements [51, 31]. Gibbs phenomenon of-
ten arises in Fourier series expansion of discontinuous data. It is named after
American physicist Josiah Willard Gibbs. In representing a piecewise contin-
uously differentiable data using the Fourier series, the overshoot of the series
happens at a jump discontinuity (Figure 3.3). The overshoot does not decease
as the number of terms increases in the series expansion, and it converges to
a finite limit called the Gibbs constant.

The Gibbs phenomenon was first observed by Henry Willbraham in 1848
but it did not attract any attention at that time [123]. Then a Nobel prize
laureate Albert Michelson constructed an harmonic analyzer, one of the first
mechanical analogue computers, that was used to plots Fourier series and
observed the phenomenon. He thought the phenomenon was caused by me-
chanical error. Josiah W. Gibbs rediscovered the phenomenon in 1898 [54]
and correctly explained the phenomenon as mathematical in 1899 [55]. Later
mathematician Maxime Bocher named it the Gibbs phenomenon and gave
a precise mathematical analysis in 1906 [16]. The Gibbs phenomenon associ-
ated with spherical harmonics were first observed by Herman Weyl in 1968 [?].
The history and the overview of Gibbs phenomenon can be found in several
literature [48, 67].

Consider the finite Fourier series expansion of 1D piecewise smooth func-
tion f ≥ 0 with discontinuity at c given by

Sk(u) =
k∑
j=0

fjψj(u),

where fj = 〈f, ψj〉. The basis is the usual sin and cosine functions. Let

d = lim
u→c+

f(u)− lim
u→c−

f(u) > 0

be the size of jump. Let u◦ be the first local maximum. Then the amount of
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FIGURE 3.3
Gibbs phenomenon on the cosine series representation of a simulated tract
for degrees 19, 50, 100 and 200 [29]. Increasing the number of basis does not
reduce the overshoot at the corner. The maximum overshoot is proportional
to Gibbs constant.

overshoot associated with the k-th series expansion is given by

Sk(u◦)− lim
u→c+

f(u).

Then we can show that the limit of the overshoot is

lim
k→∞

Sk(u◦)− lim
u→c+

f(u) =
d

2
(g − 1),

where the Gibbs constant g is given by

g =
2
π

∫ π

0

sinx
x

dx = 1.17897974 · · · .

Figure 3.3 shows the overshoot in the cosine series representation [29]. In
Figure 3.3, we have simulated 300 uniformly sampled control points along
the parameterized curve (x, y, z) = (t, 0, t) for t ∈ [1, 100) ∪ [200, 300) and
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(x, y, z) = (t, 1, t) for t ∈ [200, 300). The control points are fitted with the
cosine representation with various degrees. As the degree increases to 200, the
representation suffers from the severe ringing artifacts. The overshoot does
not disappear even as the degree of expansion goes to infinity. Various neu-
roanatomical curvilinear structures are such as white matter fibers and corpus
callosum boundaries are supposed to be smooth so we will not likely to en-
counter the severe Gibbs phenomenon.

There are few available techniques for reducing Gibbs phenomenon [19, 57].
Most techniques are variation on some sort of kernel methods. One of the
standard method is to use the Fejer kernel which is defined as

Kn(u) =
1
n

n−1∑
j=0

Dj(u),

where Dj is the Dirichlet kernel

Dj =
j∑

k=−j

eiku.

Then it can be shown that

Kn(u) =
1
n

( sin nu
2

sin u
2

)2

.

The kernel is symmetric and positive. Then we have

Kn ∗ f → f

for any f ∈ L2([−π, π]) as n→∞. Since kernel is unimodal, it has the effect
of smoothing the discontinuous signal f and in turn the convolution will not
exhibit the ringing artifacts for sufficiently large n. Heat kernel smoothing and
weighted Fourier representation behave similarly and can be used in reducing
Gibbs phenomenon.

The Gibbs phenomenon will likely arise in modeling arbitrary anatomical
objects with possible sharp corners. The Gibbs phenomenon can be effec-
tively removed if the spherical harmonic representation converges faster as
the degree goes to infinity. By weighting the spherical harmonic coefficients
exponentially smaller, we can make the representation converges faster. This
can be achieved by additionally weighting the spherical harmonic coefficients
with the heat kernel. Figure 3.4 demonstrates the severe Gibbs phenomenon
in the traditional spherical harmonic representation (top) on a hat shaped 2D
surface. The hat shaped surface is simulated as z = 1 for x2 + y2 < 1 and
z = 0 for 1 ≤ x2 +y2 ≤ 2. On the other hand the weighted spherical harmonic
representation (bottom) shows substantially reduced ringing artifacts. Due to
very complex folding patterns, sulcal regions of the brain exhibit more abrupt
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FIGURE 3.4
Gibbs phenomenon on a hat shaped simulated surface. The SPHARM repre-
sentation (top) of degrees 18, 42, 52 and 78 show severe ringing artifacts. One
the other hand, the weighted-SPHARM representation (bottom) with band-
widths 0.01, 0.001, 0.0005, 0.0001 shows less ringing artifacts. The optimal
degrees for the weighed representation is determined by the model selection
procedure and found to be 18, 42, 52 and 78 respectively.

directional change than the simulated hat surface(upward of 180 degree com-
pared to 90 degree in the hat surface) so there is a need for reducing the Gibbs
phenomenon in the traditional spherical harmonic representation.

In Figure 3.5, a different example is given for Gibbs phenomenon. Dis-
continuous measurements are constructed as a step function of value 1 in
the circular band 1

8 < θ < 1
4 and 0 outside of the band on a unit sphere.

The SPAHRM representation of the step function resulted in significant ring-
ing artifacts even for fairly high degrees up to k = 78. In comparison, the
weighted-SPHARM representation does not exhibit any serious ringing ar-
tifacts. The superior performance of the weighted-SPHARM can be easily
explained in terms of convergence. The weighted-SPHARM representation
additionally weights Fourier coefficients with exponentially decaying weights,
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FIGURE 3.5
Gibbs phenomenon in the SPHARM representation for degrees 18, 42, 52 and
78. The traditional SPHARM (top) and the weighted representations (bottom)
are performed on the discontinuous measurements on a unit sphere, which are
defined as 1 in region 1

8 < θ < 1
4 and 0 in other regions. The SPHARM

representation shows severe ringing artifacts while the weighted-SPHARM
shows the negligible ringing effect.

which contributes more rapid convergence even for discontinuous measure-
ments. This robustness of weighted-SPHARM is also related to the fact that
it is a PDE-based data smoothing technique while the traditional SPHARM
is more of interpolation or reconstruction technique.

The amount of the Gibbs phenomenon can be numerically quantified using
the overshoot as the maximum of L2 norm of the residual difference between
the original and the reconstructed surface as

sup
(θ,ϕ)∈S2

∣∣∣∣∣∣p(θ, ϕ)−
k∑
l=0

l∑
m=−l

e−l(l+1)σflmYlm(θ, ϕ)
∣∣∣∣∣∣.

If surface coordinates are abruptly changing or their derivatives are discontin-
uous, the Gibbs phenomenon will severely distort the surface shape and the
overshoot will never converge to zero. We have reconstructed a cube with var-
ious degree presentation and the bandwidth showing more ringing artifacts
and overshoot in the traditional representation compared to the proposed
weighted version (Figure 3.6). The exponentially decaying weights make the
representation converge faster and reduce the Gibbs phenomenon significantly.
The plots in Figure 3.6 display the amount of overshoot for the traditional
representation (black) and the weighted version (red). The weighted spherical
harmonic representation shows smaller overshoot compared to the traditional
representation.

For the random field-based inference on a sphere, it is useful to properly
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FIGURE 3.6
The Gibbs phenomenon in the spherical harmonic representation (top) of a
cube for degrees k = 18, 42, 78. The weighted spherical harmonic representa-
tion (bottom) at the same degrees but with bandwidth σ = 0.01, 0.001, 0.0001
respectively. The plots display the amount of overshoot for the traditional rep-
resentation (black) vs. the weighted version (grey). In almost all degrees, the
traditional spherical harmonic representation shows more prominent Gibbs
phenomenon compared to the weighted version.

estimate the full width at the half maximum (FWHM) of a heat kernel [32, 132]
. Estimating the FWHM of the heat kernel is not trivial since there is no known
close form expression for FWHM as a function of bandwidth σ in a curved
surface. So it is necessary to estimate FWHM is numerically. For p, q, r ∈ S2,
let us define the Cartesian inner product · as p · q = cos(θ), where θ is an
angle between p and q. The heat kernel is symmetric along the geodesic circle.
If p · q = p · r, we have Kσ(p, q) = Kσ(p, r). This property can be used to
simplify the expansion using the harmonic addition theorem [59, 122], which
states that

l∑
m=−l

Ylm(p)Ylm(q) =
2l + 1

4π
P 0
l (p · q). (3.26)

For any p, q ∈ S2, the heat kernel can now be simplified as

Kσ(p, q) =
k∑
l=0

2l + 1
4π

e−l(l+1)σP 0
l (p · q). (3.27)

The expression (3.27) is used to plot the shape of the heat kernel by fixing
p to be the north pole and by varying θ = cos−1(p · q). A similar result is
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also given in [20]. The maximum of the kernel is obtained at θ = 0. Then the
FWHM is solved numerically for θ in the equation

1
2

k∑
l=0

2l + 1
4π

e−l(l+1)σ =
k∑
l=0

2l + 1
4π

e−l(l+1)tP 0
l (cos θ).

The FWHM is then 2θ.

3.7 Surface Registration

Previously cortical surface normalization was performed by minimizing an
objective function that measures the global fit of two surfaces while maximiz-
ing the smoothness of the deformation in such a way that the gyral patterns
are matched smoothly [32, 102, 118]. In the spherical harmonic representa-
tion, the surface normalization is straightforward and does not require any
sort of optimization explicitly but at least requires some initial alignment. A
crude alignment can be done by coinciding the first order ellipsoid meridian
and equator in the SPHARM-correspondence approach [53, 111]. For corti-
cal meshes obtained using the anatomic segmentation using the proximities
(ASP) algorithm [81], such alignments are not needed. An approximate sur-
face alignment is done during the cortical surface extraction process. The
algorithm generates 40,962 vertices and 81,920 triangles with the identical
mesh topology for all subjects. The vertices indexed identically on two cor-
tical meshes will have a very close anatomic homology and this defines the
surface alignment. This provides the same spherical parameterization at iden-
tically indexed vertices across different cortical surfaces.

Consider a surface h = (h1, h2, h3) obtained from the coordinates vi mea-
sured at point p:

hi(p) =
k∑
l=0

l∑
m=−l

〈vi, Ylm〉(p).

Consider another surface ji obtained from coordinate functions wi:

ji(p) =
k∑
l=0

l∑
m=−l

〈wi, Ylm〉(p).

Suppose the surface hi is deformed to hi + di under the influence of the dis-
placement vector field di. We wish to find di that minimizes the discrepancy
between hi + di and ji in the finite subspace Hk. This can be easily done by
noting that

k∑
l=0

l∑
m=−l

(wilm − vilm)Ylm(p) = arg min
di∈Hk

∣∣∣∣∣∣ĥi + di − ĵi
∣∣∣∣∣∣. (3.28)
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This implies that the optimal displacement in the least squares sense is ob-
tained by simply taking the difference between two weighted spherical har-
monic representation and matching coefficients of the same degree and order.
Then a specific point ĥi(p0) in one surface corresponds to ĵi(p0) in the other
surface. We refer to this point-to-point surface correspondence as the spherical
harmonic correspondence [31]. The spherical harmonic correspondence shows
that the optimal displacement in the least squares sense is obtained by simply
taking the difference between two spherical harmonic representations. Unlike
other surface registration methods used in warping surfaces between subjects
[32, 102, 118], it is not necessary to consider an additional cost function that
guarantees the smoothness of the displacement field since the displacement
field d = (d1, d2, d3) is already a linear combination of smooth basis functions.

The previously available approaches for computing the cortical thickness
in discrete triangle meshes produce noisy thickness measures [32, 46, 81]. So
it is necessary to smooth the thickness measurements along the cortex via
surface-based smoothing techniques [7, 22, 21, 34]. On the other hand, the
weighted-SPHARM provides smooth functional representation of the outer
and inner surfaces so that the distance measures between the surfaces should
be already smooth.Hence, the weighted-SPHARM avoids the additional step
of thickness smoothing done in most of thickness analysis literature [32, 34]
while it is not necessary to perform data smoothing in the spherical harmonic
formulation. The distance between the outer and inner cortical surfaces can
be determined using the spherical harmonic correspondence. Given the outer
surface hi and the inner surface ji, the cortical thickness is defined to be the
Euclidean distance between the two representations:

thick(p) =

√√√√ 3∑
i=1

[ k∑
l=0

l∑
m=−l

〈vi − wi, Ylm〉
]2
.

A similar approach has been proposed for measuring the closeness between
two surfaces [53]. Figure 3.7 shows the comparison of cortical thickness com-
puted from the traditional deformable surface algorithm [81] and the spherical
harmonic correspondence. The cortical thickness obtained from the traditional
approach introduces a lot of triangle mesh noise into its estimation while the
spherical harmonic correspondence approach does not. The spatial smoothness
of the thickness is explicitly incorporated via the bandwidth σ.

3.8 Cortical Asymmetry

Previous neuroanatomical studies have shown left occipital and rigtht frontal
lobe asymmetry, and left planum temporal asymmetry in normal controls
[12, 73, 120]. These studies mainly flip the whole brain 3D MRI to obtain the
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FIGURE 3.7
Cortical thickness of a subject projected onto a template. The cortical thick-
ness is computed from the spherical harmonic correspondence with heat kernel
weights. As the bandwidth increases from σ = 0.0001 to 0.01, the amount of
smoothing also increases. The first image shows the cortical thickness obtained
from the traditional deformable surface algorithm [81].

mirror reflected MRI with respect to the mid-saggital cross-section. Then the
anatomical correspondence across the hemispheres is established and a subse-
quent statistical analysis is performed at each voxel in the 3D MRI. Although
this approach is sufficient for the voxel-based morphometry [8], where we only
need an approximate alignment of corresponding brain substructures, it may
fail to properly align highly convoluted sulcal and gyral foldings of gray mat-
ter. In order to address this shortcoming inherent in 3D whole brain volume
asymmetry analysis, we need a new 2D cortical surface based framework.

As shown in the previous section, surface correspondence between two
surfaces can be established using spherical harmonics. For asymmetry, we
also need to establish hemispheric correspondence within a subject. How-
ever, it is not straightforward to establish a 2D surface-based hemispheric
correspondence. Although there are many 3D volume-based brain hemisphere
asymmetry analyses [12, 73], due to this simple reason, there is a lack of 2D
surface-based asymmetry analyses. This will be the first unified mathemat-
ical framework on 2D cortical asymmetry. The inherent angular symmetry
presented in the weighted spherical harmonic representation can be used to
establish the inter-hemispheric correspondence. It turns out that the usual
asymmetry index of (L-R)/(L+R) is expressed as the ratio between the sum
of positive and negative order harmonics.

The spherical harmonic correspondence described in the previous sec-
tion can be further used to establish the inter-hemispheric correspondence
by letting ĵi be the mirror reflection of ĥi. The mirror reflection of ĥi
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with respect to the midsaggital cross section u2 = 0 is simply given by
ĵi(θ, ϕ) = ĥi

∗
(θ, ϕ) = ĥi(θ, 2π − ϕ), where ∗ denotes the mirror reflection

operation. The specific point ĥi(θ0, ϕ0) in the left hemisphere will be mirror
reflected to ĵi(θ0, 2π−ϕ0) in the right hemisphere. The spherical harmonic cor-
respondence of ĵi(θ0, 2π−ϕ0) is ĥi(θ0, 2π−ϕ0). Hence, the point ĥi(θ0, ϕ0) in
the left hemisphere corresponds to the point ĥi(θ0, 2π−ϕ0) in the right hemi-
sphere. This establishes the inter-hemispheric anatomical correspondence.

The inter-hemispheric correspondence is used to compare cortical thickness
measurements f across the hemispheres. The weighted spherical harmonic
representation of cortical thickness f is

ĝ(θ, ϕ) =
k∑
l=0

l∑
m=−l

e−l(l+1)σ〈f, Ylm〉Ylm(θ, ϕ).

At a given position hi(θ0, ϕ0), the corresponding cortical thickness is ĝ(θ0, ϕ0),
which should be compared with the thickness ĝ(θ0, 2π − ϕ0) at position
ĥi(θ0, 2π − ϕ0):

ĝ(θ0, 2π − ϕ0) =
k∑
l=0

l∑
m=−l

e−l(l+1)σ〈f, Ylm〉Ylm(θ, 2π − ϕ). (3.29)

The equation (3.29) can be rewritten using the property of spherical harmon-
ics:

Ylm(θ, 2π − ϕ) =
{
−Ylm(θ, ϕ), −l ≤ m ≤ −1,
Ylm(θ, ϕ), 0 ≤ m ≤ l,

ĝ(θ0, 2π − ϕ0) =
k∑
l=0

−1∑
m=−l

e−l(l+1)σ〈f, Ylm〉Ylm(θ0, ϕ0)

−
k∑
l=0

l∑
m=0

e−l(l+1)σ〈f, Ylm〉Ylm(θ0, ϕ0).

Comparing with the expansion for ĝ(θ0, ϕ0), we see that the negative order
terms are invariant while the positive order terms change sign. Hence we define
the symmetry index as

S(θ, ϕ) =
1
2

[
ĝ(θ, ϕ) + ĝ(θ, 2π − ϕ)

]
=

k∑
l=0

−1∑
m=−l

e−l(l+1)σ〈f, Ylm〉Ylm(θ0, ϕ0),

and the asymmetry index as

A(θ, ϕ) =
1
2

[
ĝ(θ, ϕ)− ĝ(θ, 2π − ϕ)

]
=

k∑
l=0

l∑
m=0

e−l(l+1)σ〈f, Ylm〉Ylm(θ0, ϕ0).
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We normalize the asymmetry index by dividing it by the symmetry index as

N(θ, ϕ) =
ĝ(θ, ϕ)− ĝ(θ, 2π − ϕ)
ĝ(θ, ϕ) + ĝ(θ, 2π − ϕ)

=
∑k
l=1

∑−1
m=−l e

−1(l+1)σ〈f, Ylm〉Ylm(θ, ϕ)∑k
l=0

∑l
m=0 e

−l(l+1)σ〈f, Ylm〉Ylm(θ, ϕ)
.

We refer to this index as the normalized asymmetry index. The numerator is
the sum of all negative orders while the denominator is the sum of all positive
and the 0-th orders. Note that N(θ, 0) = N(θ, π) = 0. This index is intuitively
interpreted as the normalized difference between cortical thickness in the left
and the right hemispheres. Note that the larger the value of the index, the
larger the amount of asymmetry. The index is invariant under the affine scaling
of the human brain so it is not necessary to control for the global brain size
difference in the later statistical analysis.

For each subject, its normalized asymmetry index N(θ, ϕ) is computed
and modeled as a zero mean Gaussian random field. The null hypothesis is
that N(θ, ϕ) is identical in the both groups for all (θ, ϕ), while the alternate
hypothesis is that there is a specific point (θ0, ϕ0) at which the normalized
asymmetry index is different. For the traditional group comparison between
autistic and normal control subjects, the T statistic at each point (θ, ϕ) would
be constructed. Since T statistics at different points are correlated, it becomes
a multiple comparison problem [89, 133]. The corrected P-value accounting for
spatially correlated test statistics is determined by computing the distribution
of the supremum of T random field [133], i.e.

P
[

sup
(θ,ϕ)∈S2

T (θ, ϕ) < h
]
. (3.30)
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