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Heat Kernel Smoothing of Anatomical Surfaces via
Laplace-Beltrami Eigenfunctions

Seongho Seo, Moo K. Chung, and Houri K. Vorperian

Abstract—We present a novel surface smoothing framework
using the Laplace-Beltrami eigenfunctions. The Green’s function
of an isotropic diffusion equation on a manifold is analytically
represented using the eigenfunctions of the Laplace-Beltraimi op-
erator. The Green’s function is then used in explicitly constructing
heat kernel smoothing as a series expansion of the eigenfunctions.
Unlike many previous approaches involving surface diffusion, dif-
fusion is analytically represented reducing numerical inaccuracy.
Our numerical implementation is validated against the spherical
harmonic representation of heat kernel smoothing on a unit
sphere. The proposed framework is illustrated with mandibular
surfaces, and is compared to a widely used iterative kernel
smoothing method in computational anatomy. The MATLAB
source code is freely available at http://brainimaging.waisman.
wisc.edu/~chung/lb.

Index Terms—heat Kkernel,
mandible, surface diffusion.

Laplace-Beltrami  operator,

I. INTRODUCTION

N medical image analysis, anatomical surfaces obtained

from MRI and CT are often represented as triangular
meshes. Image segmentation and surface extraction process
themselves are likely to introduce noise to the mesh co-
ordinates. It is imperative to reduce the mesh noise while
preserving the geometric details of the object for various
applications.

Diffusion equations have been widely used in image pro-
cessing as a form of noise reduction starting with Perona and
Malik in 1990 [1]. Motivated by Perona and Malik’s work,
many methods have been proposed to smooth out surface data
based on diffusion [2], [3], [4]. While many previous works
have been about surface fairing and mesh regularization [5],
[6], [7], [8], few others have also tried to smooth out measure-
ment defined on surfaces for statistical analysis purpose [2],
[9], [10], [11], [12]. Iterated kernel smoothing is also a widely
used method in approximately solving diffusion equations on
surfaces [12], [13], [14].

In brain imaging in particular, isotropic heat diffusion
on surfaces has been introduced for subsequent statistical
analysis involving the random field theory that assumes an
isotropic covariance function as a noise model [2], [3], [9],
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[10], [11]. Since then, isotropic diffusion has been mainly
used as a standard smoothing technique. These approaches
mainly use finite element or finite difference schemes which
is known to suffer numerical instability if the forward Euler
scheme is used. Instead of directly solving diffusion, iterated
kernel smoothing is often used in smoothing various cortical
surface data: cortical curvatures [15], [16], cortical thickness
[17], [18], hippocampus [19], [20], magnetoencephalography
(MEG) [21] and functional-MRI [22], [23]. In iterated kernel
smoothing, kernel weights are spatially adapted to follow the
shape of the heat kernel in a discrete fashion along a manifold.
In the tangent space of the manifold, the heat kernel can
be approximated linearly using the Gaussian kernel for small
bandwidth. A kernel with large bandwidth is then constructed
iteratively applying the kernel with small bandwidth. However,
this process compounds the linearization error at each iteration
as we will demonstrate in the paper.

In this paper, we propose a new smoothing framework that
construct the heat kernel analytically using the eigenfunctions
of the Laplace-Beltrami operator, avoiding the need for the
linear approximation [12], [13], [14]. Although solving for
the eigenfunctions of the Laplace-Beltrami operator requires
the finite element method, the proposed method is analytic
in a sense that heat kernel smoothing is formulated as a
series expansion explicitly. We are not claiming our whole
framework is analytic which is theoretically impossible when
we deal with real data. The proposed method represents
isotropic heat diffusion analytically as a series expansion so it
avoids the numerical instability associated with solving the
diffusion equations numerically [2], [3], [4]. Our radically
different framework can bypass various numerical problems
associated with previous approaches: numerical instability,
slow convergence, and accumulated linearization error. Al-
though there are many papers on solving diffusion equations
on arbitrary triangular meshes [2], [3], [4], [24], this is the
first paper that explicitly and correctly constructed heat kernel
for an arbitrary surface and solved heat diffusion using the
eigenfunctions of Laplace-Beltrami operator.

II. HEAT KERNEL SMOOTHING

Consider a real-valued measure Y defined on a closed
compact manifold M C R3. We assume the following additive
model on Y:

Y(p) = 0(p) + €(p), (1)

where 6(p) is the unknown mean signal to be estimated and
€(p) is a zero-mean Gaussian random field. We may assume
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further Y € L?(M), the space of square integrable functions
on M with the inner product

- / F)a(p) du(p), @)
M

where p is the Lebegue measure such that (M) is the total
area or volume of M. Solving

Ay = =My, 3)

for the Laplace-Beltrami operator A on M, we order eigen-
values

0=X <A <A<

and corresponding eigenfunctions g, 11,9, -~ [13], [25],
[26]. Then, the eigenfunctions ; form an orthonormal basis
in L?(M) [13], [25], [27].

Using the eigenfunctions, heat kernel K,(p,q) is then
analytically defined as

=3 e ) a). @

j=0

where o is the bandwidth of the kernel. Then heat kernel
smoothing of Y is defined analytically as

Ko xY(p) =Y e B;1;(p) 5)
7=0

where 8; = (Y, ;) are Fourier coefficients [12], [13]. This is
taken as the estimate for the unknown mean signal 6.

The heat kernel (4) is the Green’s function, or the funda-
mental solution, of the isotropic heat diffusion equation

of
do

Therefore, the heat kernel smoothing (4) is also the solution to
the diffusion equation (6) with the initial condition f(p,o =
0) = Y(p) after time o. Unlike all previous approach to heat
diffusion [2], [3], [4], [24], our formulation avoids the direct
numerical discretization of the underlying diffusion equations.
Instead we are discretizing the basis functions of the given
manifold M where the diffusion equations are defined.

In this new framework, we need to compute the terms in
(5). We first solve for the eigensystem (3) and obtain \; and
1 (section III-A). The Fourier coefficients 3; are estimated
using the iterative residual fitting (IRF) algorithm (section
III-B). The finite expansion of (5) is then used as the finite
estimate for the underlying signal # in (1). The degree for
truncating the infinite series is automatically determined using
the forward model section procedure (section III-B). The nu-
merical accuracy of the whole framework is validated on a unit
sphere where the mathematical ground truth is known in terms
of spherical harmonics (section IV-C). Taking our framework
as the baseline, we have compared our proposed method to
iterated kernel smoothing (section IV-D) to show substantial
improvement of our method to the previous approach.

= Af. (6)

Fig. 1. A typical 1-ring neighbor of a mesh vertex p;. 0;; and ¢;; are the
angles opposite to the edge p;p;. T,L.; and T,L.J; are triangles sharing the edge
Pip;- ' '

III. NUMERICAL IMPLEMENTATION
A. Generalized Eigenvalue Problem.

Since the closed form expression for the eigenfunctions
of the Laplace-Beltrami operator on an arbitrary surface is
unknown, the eigenfunctions are numerically computed by
discretizing the Laplace-Beltrami operator. To solve the eigen-
system (3), we need to discretize it on a triangular mesh using
the Cotan formulation [3], [26], [28], [29]. In a related work,
Qiu et al. [29] presented a similar Cotan discretization of
the eigensystem and used to construct splines on a manifold;
however, there is no direct mathematical relation between
splines and heat kernel smoothing. We briefly review the
Cortan formulation for discretizating the eigensystem.

Let N7 be the number of triangles in the mesh that ap-
proximates the underlying manifold M. We seek a piecewise
differentiable solution f; in the i-th triangle 7; such that the
solution f;(x) is continuous across neighboring triangles. The
solution f for the whole mesh is then

Nt
=> fila,1).
=1

Let pi,,pi,,pi; be the vertices of element T;. In T;, we
estimate f; linearly as

3
t) = Z g’bkf<plpt)
j=1

where nonnegative &;, are given by the barycentric coordi-
nates (3], [7]. Any point z € T; is uniquely determined by
two conditions:

3 3
Tr = Z gik (-r)pika Z gik (l’)
k=1 k=1

Let g be an arbitrary piecewise linear function given by

S IR

i=1 k=1

=1.
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Fig. 2.
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Eigenfunctions of various degrees for a sample mandible surface. The eigenfunctions are projected on the surface smoothed by the proposed heat

kernel smoothing with o = 0.5 and degree k = 132. The first eigenfunction is simply 19 = 1/4/u(M). The color scale is thresholded at £0.015 for

better visualization.

where g;, = ¢(p;,) are the values of function g evaluated
at vertices p;, of T;. For the function f, we can represent
similarly as f;, = f(pi,). Since the Laplace-Beltrami operator
is self adjoint, we have

/gAf dp = —/<Vf, Vg) dp = /ng dp.

Then the integral version of the eigensystem Af = —Af in
the triangle 7} can be written as
/ gAf dp = / (Vf,Vg) dp. )
i T;

The left-hand term in (7) can be written further as

3
/T g\ f dp = Z gir M, /T i iy dp (®)

i k,l=1
= \G/A'F,, 9)

where G; = (i, 9i5,95)  Fi = (fiy, fir, fis) and 3 x 3
mass matrix

A= ( 21)7 ?cl = /T gikgil dp.

i

It can be shown that

2 11
Ai:‘g| 121,
11 2

where |T;| is the area of the triangle T; [30], [31]. Similarly,
the right-hand term in (7) is

3
[ @890 du= 3 gt [ (Ve ve) du a0
Ti k=1 T;
= G|C'F;, (11)

where 3 x 3 matrix C? is given by

C' = (G, Cia = [ (V€. V&) du
Since T; is planar, the gradient V¢;, is the standard planar
gradient. The matrix C' can be further written as [30], [31],
[32]

1 ( cot 0;, + cot 8, —cot 0, —cot 0,
3 —cot 0, cot 0;, + cot b, —cot 6;,
—cot b, —cot 8;, cot 6;, + cot 0,

where 6;, is the incident angle of vertex p;, in triangle 7;. By
equating (9) and (11), we obtain

A)F, = C'F,. (12)

We solve (12) by assembling all triangles. To simply the
indexing, we will use slightly different notations from now
on. Let N(p;) be the set of neighboring vertices around p;,
and let 7 and T;; denote two triangles sharing vertices p;,
and p;. Let two angles opposite to the edge containing p;
and p; be ¢;; and 0;; respectively for 7} and Ti'; (Figure 1).
Then, the assembled sparse matrices A = (A;;) is computed
as follows. The diagonal entries are

1
Ay = B Z T;; +1T;
P;EN(pi)
and the off-diagonal entries are
1
= 15
if p; and p; are adjacent and a;; = 0 otherwise. The global
coefficient matrix C = (Cj;), which is the assemblage of
individual element coefficients is given similarly using the
cotan formulation. The diagonal entries are

1
Z (cot 0;; + cot ¢ij)

Cii ==
p; EN(ps)

A (T3 + 1)
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Fig. 3. The plot of the root mean squared errors (RMSE) for coordinates x
(blue), y (red) and z (green) for a mandible surface, varying degree k from
5 to 200. The optimal degree for the surface is 132 for bandwidth o = 0.5.

and the off diagonal entries are
1
Ci: = —§(COt Gij + cot (b”)

if p; and p; are adjacent and ¢;; = 0 otherwise. When we
construct A and C matrices, we compute the off-diagonal
elements first and the diagonal elements next by summing the
off-diagonal terms in the first ring neighbors. Finally, we can
obtain the following generalized eigenvalue problem:

Cyp = NAY (13)
Since C and A are large sparse matrices, we have solved (13)
using the Implicitly Restarted Arnoldi Method [33], [34] with-
out consuming large amount of memory and time for sparse
entries. The MATLAB code is given at http://brainimaging.
waisman.wisc.edu/~chung/Ib.

Fig. 2 shows the first few eigenfunctions for a mandible
surface. The first eigenfunction is trivially given as ¥y =
1/4/ (M) and Ay = 0 for a closed compact surface. It is
possible to have multiple eigenfunctions corresponding to a
single eigenvalue. The multiplicity of the eigenvalues of the
Laplace-Beltrami operator is known although the exact number
of multiplicity is unknown for arbitrary manifolds [35]. For
smooth genus zero surfaces, the multiplicity m is bounded by

m(Ag) <2k — 3 for k > 2.

Suppose k1, - - Yk, are k., eigenfunctions corresponding
to eigenvalue Ay. Then any linear combination of vy is also
an eigenfunction. Hence, within the same degree, the space of
eigenfunctions form a vector space. The eigenfunctions form
a complete orhonormal basis in the space of square integrable
functions, L2(M), so all other possible orthonormal basis is
a linear combination of eigenfunctions.

B. Iterative Residual Fitting Algorithm.

Once we obtain the eigenfunctions numerically, we con-
struct the subspace Hy,, which is spanned by up to k-th degree
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Fig. 4. The plot of optimal degree (vertical) over varying bandwidths (0 <
o < 100) for a mandible surface (blue) and the average optimal degree for 10
mandible surfaces. As smoothing increases, the optimal degree decreases. The
bandwidth controls not only the amount of smoothing but also the optimal
degree.

basis. Then we approximate the functional data Y in Hj by
minimizing the sum of squared residual:

k
arg min [|f = Y[ = B4 (p), (14)
FEH =
where §; = (Y, ;) are Fourier coefficients to be estimated.
The coefficients can be estimated in the least squares method.

Consider the triangular mesh for M consisting of n nodes.
Denote

Y = (Y(pl)’ T 7Y(pn))/a 8= (607 T 7ﬂk)l'

Then, we can represent (14) as the normal equation,

Y =09, (15)

where ¥ = (¥g, -, W) and ¥; = (¢;(p1), -, ¥;(Pn))’-
The coefficients 3 are estimated in the least squares fashion
[36] as R

8= (¥o) 'vy. (16)
Since the size of matrix ', i.e. k x k, can become fairly
large for large number of basis, it may be difficult to directly
invert it when there is a need to obtain large number of
basis. So we have adopted a more general iterative strategy
to overcome the possible computational bottleneck by break-
ing a large least squares problem into smaller least squares
problem using the iterative residual fitting (IRF) algorithm
[371, [38] that was originally developed for spherical harmonic
representation. In this paper it will be shown that 132 basis are
sufficient for representing mandible surfaces so we can directly
invert the matrix but we wanted to develop a more general
framework that will work for more complex high resolution
surfaces like human brain surfaces.

The Fourier coefficients are estimated based on an iterative
procedure that utilizes the orthonormality of the eigenfunc-
tions. Decompose the subspace Hj, into smaller subspaces as
the direct sum

He=Zo®ZLy - DLy,
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Fig. 5.

Smoothed mandible surfaces. Left: the original sample surface. Top: heat kernel smoothing with various bandwidths, o = 0.5, 20, 50 and 100 which

have corresponding optimal degrees, 132, 81, 30, and 24 respectively. Bottom: iterated kernel smoothing with fixed bandwidth o = 0.5/13 with the varying
number of iterations (n = 13, 520, 1300 and 2600), which results in the effective bandwidths o = 0.5, 20, 50 and 100. The iterated kernel smoothing results

are drastically different from the heat kernel smoothing results.

where each subspace Z; is the projection of H}, along the j-th
eigenfunction. Instead of directly solving the normal equation
(15), we project the normal equations into a smaller subspace
Z; and find the corresponding coefficient (; in an iterative
fashion from increasing the degree from O to k.

At degree k = 0, we write Y = W3y +ro, where rg is the
residual of estimating Y in subspace Zy. Then, we estimate
Bo by minimizing the residual in the least squares fashion:

> 7 Yoy Y (pi)o(pi)
Bo = (T, 1 WY = ==L ) (17)
0 0 Zi:l 1/’8(]31')
At degree j, we have
rj=r; 1 —e N[ (18)

where the previous residual r;_; is given by
j—1
rj—l =Y — Z e_AiU\I’i@.
i=0
The parameter [3; is then estimated by minimizing the next
residual r; in the least squares fashion

Bj = (\Il;\Ilj)fllll;rj_l.

The optimal stopping rule for the algorithm is determined
if the decrease of the root mean squared errors (RMSE) is
statistically no longer significant using the F'-test [37], [38],
[39]. Fig. 3 shows the the plot of RMSE that flattens out after
certain degree. Once we estimated coefficients up to degree j—
1, we test if adding the degree k term is statistically significant
by testing the null hypothesis

Ho : By = 0. (19)

Let the sum of squared errors (SSE) of the k-th degree
expansion be

n

k
ssEx = 3 [v(p) - 3 B oo)]
=0

i=1

(20)

RMSE is then given as /SSE /n. As the degree k increases,
SSE;, decreases so it is reasonable to choose the k-th series

expansion as optimal representation when the decrease of
SSE is no longer significant. Under Hy, the test statistic F’
follows

SSE4_; — SSE;
SSEx_1/(n—k—2

the F-distribution with 1 and n—k—2 degrees of freedom. We
compute the F’ statistic at each degree, and find the degree of
expansion where corresponding p-value first becomes bigger
than the pre-specified significance o = 0.01.

F = 7 Fin——2, 2h

IV. EXPERIMENTAL RESULTS

We applied the proposed smoothing method to mandible
surfaces obtained from CT. The method is further validated
against the spherical harmonics on a unit sphere and compared
against iterative kernel smoothing methods [12], [13], [14].

A. Image Acquisition and Preprocessing.

The CT images were obtained using several different models
of GE multi-slice helical CT scanners. The CT scans were
acquired directly in the axial plane with a 1.25 mm slice
thickness, matrix size of 512 x 512 and 15-30 cm field of
view (FOV). Image resolution varied and was in the range of
0.29 to 0.59 mm as determined by the ratio of FOV divided by
the matrix. CT scans were converted to DICOM format and
subsequently Analyze 8.1 software package (AnalyzeDirect,
Inc., Overland Park, KS) was used in segmenting binary
mandibular structure based on histogram thresholding. By
checking the Euler characteristic, holes in mandible images
were automatically filled up using morphological operations
to make the mandible binary volume to be topologically
equivalent to a solid sphere.

B. Results.

We applied the proposed method in smoothing a mandibular
surface. The optimal eigenfunction expansion was determined
using the F'-test at o = 0.01. Since there are three different
optimal degrees corresponding to three coordinate functions,
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Fig. 6. Comparison of eigenvalues for a unit sphere. 144 eigenvalues are
numerically computed (blue) and compared against the ground truth (red)A\; =
[(1+1) for up to degree [ = 11. They mach extremely well and the maximum
possible relative error is 0.0032 (0.32%).

we choose the maximum of 3 optimal degrees as the overall
optimal degree. Fig. 3 shows the plot of the RMSE of a
mandible surface for varying degrees between 5 to 200. As
the degree k increases, the RMSE for each coordinate rapidly
decreases and starts to flatten out at a certain degree. The
optimal degree for the sample surface is determined as 132 for
bandwidth 0.5. As the bandwidth increases, the optimal degree
decreases due to smoothing effect (Fig. 4). Fig. 5 shows the
result of heat kernel smoothing. Since the optimal degree for
one surface may not be optimal for other surfaces, we have
computed the optimal degree for 9 more mandible surfaces
and averaged them (Fig. 4). The optimal degrees at different
bandwidths are k = 185 (0 = 0.5), k = 95 (0 = 20), k =
42(o = 50), and k = 29(0 = 100). These values can be used
as a guideline for determining approximate optimal degrees for
other mandibular surfaces.

The numerical implementation was done with MATLAB 7.9
in 2 x 2.66 GHz Quad-Core Intel Xeon processor MAC PRO
desktop with 32 GB memory. For the sample mesh with 22050
vertices, the whole process took approximately 75 seconds:
55 seconds for setting up the generalized eigenvalue problem
(13), 10 seconds to actually solve (13), 0.1 seconds for the
IRF algorithm, and 9 seconds for finding the optimal degree.

C. Validation.

The proposed method is validated on a unit sphere where
the ground truth is known. On the unit sphere, the Laplace-
Beltrami eigenfunctions are spherical harmonics; however, due
to the multiplicity of eigenvalues on the sphere, any linear
combination of spherical harmonics of the same degree is
again an eigenfunction. Therefore, we only checked if solving
(13) produces the expected eigenvalues. We further checked
if the constructed heat kernel matches to the ground truth on
the unit sphere.

The parametrization of the unit sphere is given by

p = (sin 6 cos ¢, sin O sin ¢, cos 9),

TABLE 1
ACCURACY OF EIGENVALUES.

Computed results Theoretical values
degree j Aj degree [ | order m | X;
0 0 0 0 0
1 2.0002 1 -1 2
2 2.0002 1 0 2
3 2.0002 1 1 2
4 6.0011 2 -2 6
9 12.0038 3 -3 12
16 20.0100 4 -4 20
25 30.0206 5 -5 30
with (0, ¢) € [0,7] ® [0, 27). The polar angle 6 is the angle

from the north pole and the azimutal angle ¢ is the angle
along the horizontal cross-section. The spherical harmonic of
degree [ and order m, Y7, [40], [41] is defined as

clmP| (cosO)sin(|m|p), —1<m < -1,
Yim = C\I/%lel(cos 0), m =0,
clmPl| (cosO) cos(|m|p), 1<m <lI,
where ¢, = 212—';1 Eﬁml‘g;: and P/" is the associated

Legendre polynomials of order m given by
(1 o x2)m/2 dl+m
207 dzltm

There are 2]+ 1 eigenfunctions Y}, corresponding to the same
eigenvalue A; = [(l 4+ 1). Heat kernel is defined as

Sy e

=0 m=—1

P (x) = (2> -1V ze

[—1,1].
Doy, (p)Yim(e)  (22)

while heat kernel smoothing of functional data Y is given by

[e%S) l
=3 Y8, Vi (p),

=0 m=—1

(23)

where p = (0,¢) and G, = (Y, Y},,). The exact analytic
form (22) serves as the ground truth for validation.

For validation, we computed eigenvalues and constructed
the heat kernels on the spherical mesh with uniformly sampled
40,962 vertices. We first investigated the accuracy of eigen-
values. Fig. 6 shows that the computed eigenvalues compared
against the ground truth up to the degree | = 11. The
maximum possible relative error is 0.0032 (0.32%). Table 1
shows the numerical result for few selected eigenvalues. To
investigate the accuracy of the constructed heat kernel, we
compared our method to the closed form (22). For our own
method, we used expansion up to degree 143 while for (22)
degree up to [ = 11 is used. Fig. 7 shows the result of RMSE
of proposed heat kernel smoothing against the ground truth.
For sufficiently large bandwidth o, RMSE is negligible.

D. Comparison.

The proposed heat kernel smoothing was compared against
widely used iterated kernel smoothing [12], [14]. We have used
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Fig. 7. The plot of the root mean squared errors (RMSE) of constructed
heat kernel against the ground truth on a unit sphere for varying bandwidth
o from 0.01 to 0.5. For sufficiently large bandwidth o, RMSE is negligible.

the MATLAB implementation given in http://www.stat.wisc.
edu/~mchung/softwares/hk/hk.html. In iterated kernel smooth-
ing, the weights of the kernel are spatially adapted to follow
the shape of heat kernel in discrete fashion along a surface
mesh. Smoothing with large bandwidth is broken into iterated
smoothing with smaller bandwidths:

KpoxY = Kg %% Ks %Y. 24)
—_———

m times

We will denote m-iterated kernel smoothing using the super-
script as
K™ Y = K, - % K, %Y.
————
m times

Then using the parametrix expansion [25], [42], we approxi-
mate heat kernel locally using the Gaussian kernel for small
bandwidth:

Ko (p,q) =

eol- T2y 1 067, ey

1
VAaro
where d(p, q) is the geodesic distance between p and ¢. For
sufficiently small bandwidth o, all the kernel weights are
concentrated near the center, so the first neighbors of a given
mesh vertex is sufficient for approximation. Unfortunately, this
approximation is bound to compound error at each additional
iteration. For numerical implementation, we used the normal-
ized truncated kernel given by

2
Wo(p, ai) = exp[ = ° %jl)] ~—,
— =2 \HgJ
Z;:O €xp [ (qu )]

where q1,--- , g, are r neighboring vertices of p = gg. Then,
the iterated heat kernel smoothing is defined as

(26)

WoxY(p) =Y Wol(p,a:)Y(a). 27)
i=0

We have compared the performance of iterated kernel

smoothing (27) against heat kernel smoothing. Due to the

lack of the ground truth on an arbitrary surface, there have

been no validation framework on the performance of iterated

0 . . .
0 50 100 150

200

Fig. 8.  Plot of the relative RMSE of iterated kernel smoothing against
ground truth for coordinates = (blue), y (red) and z (green) over the number
of iterations n (1 < n < 200). The proposed heat kernel smoothing with
o = 0.5 and £k = 132 is taken as the ground truth and iterative kernel
smoothing is compared.

kernel smoothing except [22]. For heat kernel smoothing,
we used the bandwidth ¢ = 0.5 and eigenfunctions up to
k = 132 degree. For iterated kernel smoothing, we varied the
number of iterations 1 < m < 200 with the correspondingly
smaller bandwidth 0.5/m to have the effective bandwidth
of 0.5. For the comparison of performance between both
smoothing methods, we calculated RMSE. The performance
of the iterated kernel smoothing depended on the number of
iterations, as shown in the plot of RMSE of mesh coordinates
over the number of iterations (Fig. 8). The RMSE was up
to 360% and it did not decrease even if we increase the
number of iterations. Even at the optimal iteration 12 which
shows the minimum RMSE, the proposed method provides a
better accuracy by the factor of 30%. This comparison directly
demonstrates the limitation of iterated heat kernel smoothing
which does not converge to heat diffusion.

In another comparison (Fig. 9), we numerically constructed
a heat kernel with small bandwidth 0.025 as a sample data.
Then we performed the additional iterated kernel smoothing
49 and 199 times on the sample data to obtain a kernel
with the effective smoothing bandwidth of 1.25 and 5. We
also performed heat kernel smoothing on the sample data
with degree 132 and bandwidths 1.225 and 4.975 making
the effective bandwidths of 1.25 and 5 respectively. Fig.
9 shows that the shapes of two kernels are different. This
visually demonstrates iterated kernel smoothing differs from
heat kernel smoothing.

V. CONCLUSION

We presented a novel heat kernel smoothing framework
where the smoothed data is expanded using the Laplace-
Beltrami eigenfunctions analytically. The expansion is the
solution of isotropic heat diffusion. The method is validated
on a unit sphere, where heat kernel is exactly given in terms
of spherical harmonics. As demonstrated in the validation,
the proposed method is highly accurate making heat kernel
smoothing as the possible ground truth for comparing other
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Kernel shape comparison. Heat kernel with bandwidth 0.025 is numerically constructed to be used as a sample data (1st). The sample data is
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smoothed using heat kernel smoothing with degree 132 and with bandwidth 1.225 (2nd) and 4.975 (3rd) resulting in the effective smoothing bandwidth of
1.25 and 5 respectively. Iterated kernel smoothing with bandwidth 0.025 is also applied to the sample data with 49 (4th) and 199 (5th) iterations to have the

effective bandwidth of 1.25 and 5.

smoothing techniques. Therefore, we have determined the ac-
curacy of widely used iterated kernel smoothing which has not
been properly validated yet due to the lack of the ground truth.
Heat kernel smoothing outperforms iterated kernel smoothing
at least by 30% in accuracy.
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