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Tensor-Based Cortical Surface Morphometry via
Weighted Spherical Harmonic Representation

Moo K. Chung*, Kim M. Dalton, and Richard J. Davidson

Abstract—We present a new tensor-based morphometric frame-
work that quantifies cortical shape variations using a local area
element. The local area element is computed from the Riemannian
metric tensors, which are obtained from the smooth functional
parametrization of a cortical mesh. For the smooth parametriza-
tion, we have developed a novel weighted spherical harmonic
(SPHARM) representation, which generalizes the traditional
SPHARM as a special case. For a specific choice of weights, the
weighted-SPHARM is shown to be the least squares approxima-
tion to the solution of an isotropic heat diffusion on a unit sphere.
The main aims of this paper are to present the weighted-SPHARM
and to show how it can be used in the tensor-based morphom-
etry. As an illustration, the methodology has been applied in the
problem of detecting abnormal cortical regions in the group of
high functioning autistic subjects.

Index Terms—Cortical surface, spherical harmonic (SPHARM),
tensor-based morphometry.

I. INTRODUCTION

I N many previous cortical morphometric studies, cortical
thickness has been mainly used to quantify cortical shape

variations in a population [13], [21], [27], [33]–[35]. The
cortical thickness measures the amount of gray matter along
the normal direction on a cortical surface. However, the gray
matter growth can be characterized by both the normal and the
tangential directions along the surface [13]. In this paper, we
present a new tensor-based morphometry (TBM) that quantifies
the amount of gray matter along the tangential direction via
the concept of a local area element. The local area element is
obtained from the Riemannian metric tensors, which are com-
puted from the novel weighted spherical harmonic (SPHARM)
representation [9]. We will review literature that are directly
related to our methodology and address what our specific
contributions are.

Unlike the deformation-based morphometry (DBM) [5], [12],
[49], which uses deformation obtained from the nonlinear regis-
tration of brain images, TBM uses the high order spatial deriva-
tives of deformation in constructing morphological tensor maps
such as Jacobian determinant, torsion, and vorticity [4], [12],
[13], [20], [44]. From these tensor maps, 3-D statistical para-
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metric maps (SPM) are constructed to quantify variations in
higher order changes of deformation fields. The main morpho-
metric measure in the TBM is the Jacobian determinant of the
deformation field since it directly measures tissue growth and
atrophy. The advantage of TBM over DBM is that TBM can di-
rectly characterize tissue growth while DBM only characterize
the relative positional difference so the Jacobian determinant
is a more relevant metric for quantifying tissue growth and at-
rophy [12]. In this study, the concept of the Jacobian determi-
nant is generalized to a local area element via the Riemannian
metric tensor formulation. Our local area element is the differ-
ential geometric generalization of the Jacobian determinant in
Riemannian manifolds. So the area element can be used to quan-
tify the tangential cortical tissue growth and atrophy directly.

As a subset of TBM, cortical surface specific morphome-
tries have been developed [11], [13], [16], [45], [47]. Unlike
3-D whole brain volume based TBM, the surface specific mor-
phometries have the advantage of providing a direct quantifi-
cation of cortical morphology. Further, better sensitivity and
specificity can be obtained in analyzing cortical surface specific
morphometric changes [1], [13], [33]. The cerebral cortex is a
2-D highly convoluted sheet without any holes or handles topo-
logically equivalent to a sphere [20]. Most of the features that
distinguish these cortical regions can only be measured relative
to the local orientation of the cortical surface [16]. It is likely
that different clinical populations will exhibit different cortical
surface geometry. By analyzing surface measures such as cor-
tical thickness, curvatures, surface area, local area element, and
fractal dimension, brain shape differences can be quantified lo-
cally along the cortical surface [13], [11], [45], [47]. Cortical
surface analyses require the segmentation of tissue boundaries,
which are mainly obtained as high-resolution triangle meshes
from deformable surface algorithms [19], [16], [34]. The inter-
face between gray and white matter is called the inner surface
while the gray matter and cerebrospinal fluid (CSF) interface is
called the outer surface. In this study, we will only use the outer
surface for the local area element computation.

Once we have a triangular mesh as a realization of a cor-
tical surface, surface related geometric quantities can be com-
puted from the mesh. Due to the discrete nature of triangle mesh,
surface parameterization is necessary for accurate and smooth
estimation of the geometric quantities. Cortical surface param-
eterization has been mainly done by fitting a quadratic poly-
nomial locally [13], [28], [29]. Then from this local parame-
terization, Gaussian and mean curvatures and the Riemmanian
metric tensors are computed to characterize cortical shape vari-
ations. However, the quadratic polynomial fit requires an accu-
rate normal vector estimation, which tend to be highly unstable
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in triangle meshes [36], [53]. In contrast to this local approach,
a global parameterization via SPHARM is also available [23],
[24], [31], [40], [41]. This traditional SPHARM representation
has been mainly used as a data reduction technique rather than
obtaining high order spatial derivative information. Two-dimen-
sional anatomical boundaries such as ventricle surfaces [23] and
hippocampal surfaces [41] are parameterized by SPHARM and
its coefficients are fed into statistical analyses such as a principal
component analysis, a linear discriminant analysis, and support
vector machines. The main geometric features are encoded in
low degree spherical harmonic, while the noise will be in high
degree spherical harmonics [24]. In this study, we generalize
the traditional SPHARM by weighting its coefficients with ex-
ponentially decaying factors, and develop an iterative analytic
differentiation framework for computing the Riemannian metric
tensors. It will be shown that the weighted-SPHARM is a more
generalized framework than the traditional SPHARM. Since we
are not performing a finite difference based numerical differen-
tiation, the tensor estimation should be more stable. Compared
to the local polynomial fitting, our approach completely avoids
estimating unstable normal vectors. The weighted-SPHARM
tends to be computationally expensive compared to the local
quadratic polynomial fitting while providing more accuracy and
flexibility for a hierarchical representation.

In previous TBM, computations on a discrete triangle mesh
produced significant mesh noise in cortical measure. In order to
increase the signal-to-noise ratio (SNR) and the sensitivity of
statistical analysis for cortical measure, cortical surface based
data smoothing such diffusion smoothing was necessary [1], [8],
[13], [33], [46]. The drawback of the diffusion smoothing is
the complexity of setting up a finite element method (FEM)
and making the numerical scheme stable [8], [13]. Since the
weighted-SPHARM is mathematically equivalent to the diffu-
sion smoothing [9] while it uses the exact analytical basis, it of-
fers a more accurate numerical approximation over the diffusion
smoothing without additional computation. Further, because the
full-width at half-maximum (FWHM) of the smoothing kernel
can be exactly computed in the weighted-SPHARM while it is
only an asymptotic approximation in the diffusion smoothing
[11], the random-field-theory-based statistical analysis can be
used. This provides a more coherent and unified cortical sur-
face analysis framework.

Once we compute the local area elements from the weighted-
SPHARM, it is necessary to compare them across subjects
via surface registration. Most previous surface registration
methods are formulated as an optimization problem by min-
imizing an objective function that measures the global fit of
two surfaces while maximizing the smoothness of the de-
formation in such a way that the gyral patterns are matched
smoothly [11], [16], [18], [21], [38], [47]. These type of surface
registration techniques are computationally expensive. In the
weighted-SPHARM representation, the surface registration is
straightforward and does not require any sort of optimizations
explicitly. Corresponding surface positions are established by
matching spherical harmonics [9]. This technique has an advan-
tage of bypassing the computationally expensive optimization
problem since the correspondence across subjects are built into
the weighted-SPHARM representation itself.

Fig. 1. Using the deformable surface algorithm that establish a mapping from
a unit sphere to a cortical surface, we parameterize the cortical surface with the
polar angle � and the azimuthal angle '.

II. PRELIMINARY

In this section, we introduce mathematical notations and basic
concepts of SPHARM. Since there are variations on defining the
associated Legendre polynomials and the spherical harmonics,
it is necessary to clearly state the exact mathematical forms to
minimize confusion. Many SPHARM literature [7], [23], [24],
[41] use the complex-valued spherical harmonics while we are
using the real-valued spherical harmonics since it is more intu-
itive to set up a statistical model.

A. Surface Parametrization

Let and be a cortical surface and a unit sphere, respec-
tively. and are realized as polygonal meshes with more
than 80 000 triangle elements. It is natural to assume the cortical
surface to be a smooth 2-D Riemannian manifold parameterized
by two parameters [19]. This parametrization is constructed in
the following way. A point is mapped
to via the mapping , which is obtained by
a deformable surface algorithm that preserves anatomical ho-
mology and the topological connectivity of meshes (Fig. 1). We
will refer this mapping as the spherical mapping. Then we pa-
rameterize by the spherical coordinates:

with . The polar angle is the
angle from the north pole and the azimuthal angle is the angle
along the horizontal cross section of a MRI (Fig. 1).

The mapping from the parameter space to the unit sphere
will be denoted as , i.e., . Then we have a

composite mapping from the parameter space to the cortical
surface: is a 3-D vector of surface
coordinates and it will be stochastically modeled as

(1)

where is a unknown true differentiable parametrization and
is a random vector field on the unit sphere. The computation
of the Riemannian metric tensors and the local area element
require estimating differentiable function .

B. Spherical Harmonic Representation

The basis functions on a unit sphere are given as the eigen-
functions satisfying , where is the spherical
Laplacian

There are eigenfunctions, denoted as ,
corresponding to the same eigenvalue . is
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Fig. 2. Spherical harmonic basis of selective degree and orders. The center of
the concentric circles at orderm = 0 is the north pole.

called the spherical harmonic of degree and order [15]. The
explicit form of the spherical harmonics of degree is
given by

where and
is the associated Legendre polynomial of order . Spherical
harmonics of particular degrees and orders are illustrated in
Fig. 2. For fixed , form orthogonal polynomials over

. Following the convention used in Arfken [3], we have
omitted the phase in the definition of the associated
Legnedre polynomial. Many previous SPHARM literature [7],
[23], [24], [41] used the complex-valued spherical harmonics
so the care is needed in comparing different numerical im-
plementations of the associated Legendre polynomials and
the spherical harmonics. The spherical harmonics form or-
thonormal bases on such that

if ,
otherwise.

(2)

For , the space of square integrable functions
in , the inner product is defined as

where the Lebesgue measure . Consider
the subspace

which is spanned by up to the th degree spherical harmonics.
We are interested in estimating using a function in

. The least squares estimation (LSE) of in the subspace
is then given by the finite Fourier series expansion.

Theorem 1:

where the norm is defined as .
This is the basis of the traditional SPHARM representation

of closed anatomical boundaries [23], [24], [41].

III. WEIGHTED-SPHARM

A. Basic Theory

The traditional SPHARM is only one possible representa-
tion of functional data measured on a unit sphere. We present
a more general representation called the weighted-SPHARM,
which weights the coefficients of the traditional SPHARM by
the eigenvalues of a kernel. It can be shown that the traditional
SPHARM is the special case of the weighted-SPHARM.

We start with the spectral representation of a positive definite
kernel in . Consider the positive definite kernel of the
form

(3)

where the ordered eigenvalues

satisfy

(4)

This is the special case of the Mercer’s theorem [15]. From (4),
it follows that is a reproducing kernel in . Without the
loss of generality, we assume the kernel is normalized as

(5)

The smooth functional estimation of measurement is
searched in that minimizes the integral of the weighted
square distance between and .

Theorem 2:

We will call the finite expansion given in Theorem 2 as the
weighted-SPHARM representation. The theorem can be proved
by substituting and optimizing
with respect to .

Define kernel smoothing as the integral convolution

(6)

(7)
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Fig. 3. The shape of the heat kernel K (p; q) for various bandwidths �. The
shape is computed from the harmonic addition theorem and (16). The point p is
fixed to be the north pole and the horizontal axis is the angle cos (p � q).

The last equation is obtained by substituting (3) into (6). The
(7) shows that the weighted-SPHARM is the finite expansion of
kernel smoothing. Kernel smoothing (3) can be further shown
to be the minimizer of the following integral.

Theorem 3: For a fixed point

(8)

This theorem can be proved by differentiating the integral
with respect to .

For the choice of eigenvalues the corre-
sponding kernel is called the heat kernel or Gauss–Weistrass
kernel [7], [11], [39] and it will be denoted as

(9)

The parameter determines the spread of kernel as shown in
Fig. 3. As , and the heat kernel

, the Dirac-delta function. So the traditional SPHARM is
a special case of the weighted-SPHARM. It is interesting to note
that even though the regularizing cost functions are different in
Theorem 1 and 2, they are related asymptotically.

Another interesting property of the weighted-SPHARM is
observed by noting that is the unique solution of the
isotropic heat diffusion

(10)

at time [9], [11], [39]. Hence, the weighted-SPHARM
is the finite expansion of the isotropic heat diffusion. Instead
of solving the heat equation numerically, which tends to be
unstable [1], [13], the weighted-SPHARM representation pro-
vides a more stable approach. In a similar approach, Bulow used
spherical harmonics in developing isotropic heat diffusion via
the Fourier transform on a unit sphere as form of hierarchical
surface representation [7].

Fig. 4. The first column is a hat shaped 3-D step function. The weighted-
SPHARM (bottom) of the step function at different bandwidths (� = 0:01,
0.001, 0.0005, 0.0001) and the corresponding traditional SPHARM (top) of the
same degree. The weighted-SPHARM has less ringing artifacts.

There are two main advantages of using the weighted-
SPHARM over the traditional SPHARM. The weighted-
SPHARM reduces the substantial amount of the Gibbs phe-
nomenon (ringing artifacts) [9], [22] that is associated with the
convergence of a Fourier series. Either discontinuous or rapidly
changing measurements will have slowly decaying Fourier
coefficients and thus the traditional SPHARM representation
converges slowly. However, the weighted-SPHARM addition-
ally weights the Fourier coefficients with the exponentially
decaying weights contributing to more rapid convergence.
The Gibbs phenomenon is visually demonstrated in Fig. 4
with a hat-shaped step function ( if and

if ). The bottom figures are the
weighted-SPHARM at different scales ( , 0.001,
0.0005, 0.0001), and the top figures are the corresponding
traditional SPHARM of the same degree. The degree selection
process is discussed in the next section. The top figures exhibit
significant ringing artifacts while the bottom figures show less
ringing artifacts.

The second advantage of using the weighted-SPHARM is re-
lated to heat kernel smoothing formulation used in the random
field theory [11], [51], [52]. The random field theory that is
needed to correct for multiple comparisons requires the smooth-
ness of signal, as measured as the FWHM of the heat kernel.
In the traditional SPHARM, the heat kernel degenerates to the
Dirac-delta function so we cannot apply the random field theory
directly.

B. Numerical Implementation

The eigenvalues are given analytically from a given
kernel. So we only need to numerically compute the Fourier
coefficients in the weighted-SPHARM representation.
Previously, the computation for the Fourier coefficients com-
putation for the Fourier coefficients was based on the direct
numerical integration over high-resolution triangle meshes with
more than 80 000 triangles and the average intervertex distance
of 0.0189 mm [10]. Unfortunately, the direct numerical integra-
tion is extremely slow and it is not practical when high degree
spherical harmonics are needed. So we have recently developed
a new numerical technique called the iterative residual fitting
(IRF) algorithm [9], [40]. Compared to the numerical integra-
tion, which takes more than few hours, the IRF algorithm takes
only about 5 min per subject for computing all the coefficients
up to degree 78 in a personal computer.



CHUNG et al.: TENSOR-BASED CORTICAL SURFACE MORPHOMETRY VIA WEIGHTED SPHERICAL HARMONIC REPRESENTATION 1147

Fig. 5. The mean (left) and the standard deviation (middle) of the Fourier co-
efficients for 28 subjects. The vertical axis is the degree and the horizontal
axis is the order arranged from the lowest to the highest. Right: The p-value
of a Jarque–Bera test for normality. Smaller p-values indicate the tendency
for nonnormality. Only 10 out of total 1849 coefficients show nonnormality at
� = 0:05 level.

The IRF algorithm estimates the Fourier coefficients itera-
tively by breaking a large least squares problem in the sub-
space into smaller subspaces. Let us decompose the sub-
space into the smaller subspaces as the direct sum

, where the subspace

is spanned by the th degree spherical harmonics only. Then
the IRF algorithm estimates the Fourier coefficients in each
subspace iteratively from degree 0 to . This hierarchical
estimation from lower to higher degree is possible due to the
orthonormality of spherical harmonics. The technical detail of
the IRF algorithm, numerical implementation, accuracy issues
are given in [9] and [40]. The MATLAB implementation of IRF
is freely available online with a sample outer cortical surface.

While increasing the degree of the weighted-SPHARM in-
creases the goodness-of-fit, it also increases the number of co-
efficients to be estimated quadratically. So it is necessary to find
the optimal degree where the goodness-of-fit and the number of
parameters balance out. In most previous SPHARM literature
[23], [24], [40], [41], the degree is simply selected based on a
prespecified error bound that depends on the size of an anatom-
ical structure. We have adapted a model selection framework
[37] that does not depend on the size of the anatomical structure.

The Fourier coefficients can be modeled to follow
independent normal distribution . Within the same
degree, equal variance is assumed. We have checked the model
assumption on our data set. Fig. 5 shows the sample mean and
variance of the Fourier coefficients for the -coodrinates of 28
subjects. The vertical direction is the degree and the horizontal
direction is the order arranged from to . The third figure
shows the -value of testing normality using a Jarque–Bera
statistic [26]. Only 10 out of total coefficients
show nonnormality at level indicating our normality
assumption is valid. We have also computed cross correlation of
all pairs of coefficients to check independence (Fig. 6).
Note that Gaussian random variables are independent if cross
correlations are zero. The most pairs show extremely low
correlation and the average correlation is 0.16 indicating the
independence assumption is valid.

1http://www.stat.wisc.edu/~mchung/softwares/weighted-SPHARM.html

Fig. 6. Left: cross correlation of up to 42 SPHARM coefficients. Right: en-
largement of a small white square in the left figure. Cross correlation map shows
very low correlation in most pairs. Average correlation is 0.16.

Fig. 7. The weighted-SPHARM representation at different bandwidths. The
first column is the original cortical surface. The color bar indicates x-coordinate
values. The second row shows the result mapped on a unit sphere. The black dot
in the center indicates the north pole.

The above model assumption is equivalent to the following
linear model:

(11)

where is a zero mean isotropic Gaussian random field.
Once we determined all the coefficients up to the th degree
using the IRF algorithm, we check if adding the next terms

to the th degree model (11) is
statistically significant in a forward model section framework
[9], [37]. If the corresponding -value of the test statistic [37],
[50] is bigger than the prespecified significance level of 0.05,
we stop the iteration. If not, we increase the degree and repeat
the process. For bandwidths 0.01, 0.001, 0.0005, 0.0001,
the optimal degrees are 18, 42, 52, 78, respectively (Fig. 7).

We have compared the IRF result against the analytical solu-
tion of (10). For any arbitrary initial condition of the form

(12)

the solution to (10) is given by

(13)

Comparing the analytical solution (13) to the result obtained
from the IRF algorithm serves as the basis for validation. It is
sufficient to use a single term in (12) for validation. Let

be an initial condition of (10). Then the solution of
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TABLE I
FWHM AND ACCURACY FOR THE WFS REPRESENTATION

(10) is given by . Table I shows the compar-
ison for various degrees and orders. The fifth column shows the
mean absolute error between the theoretical value and the
numerical result obtained from the IRF algorithm. The mean is
taken over all mesh vertices. The last column shows the numer-
ical computation of integral . Table I
shows our numerical implementation provides sufficiently good
numerical accuracy.

IV. TENSOR-BASED MORPHOMETRY

Taking weighted-SPHARM as a global parameterization for
cortical surface , we can compute the Riemannian metric ten-
sors that are needed in computing the local area element.

A. Metric Tensor Estimation

The weighted-SPHARM estimation of the unknown true
parametrization in (1) is given by

with . For this study, we used Eigenvalue
corresponding to the heat kernel. The Rie-

mannian metric tensors will be computed by analytically
differentiating the weighted-SPHARM. The estimation of the
Riemannian metric tensors requires partial derivatives of .
Denoting the partial differential operators as and

, we have

The derivatives of spherical harmonics can be analytically
computed. We start with the derivative for the associated Le-
gendre polynomials

where . Note that if . The recur-
sive formula introduces a numerical singularity at the north and
south poles ( ) so we have chosen the poles to be the
regions of noninterest that connect the left and the right hemi-
spheres (Fig. 1). Then the derivatives of spherical harmonics are
expressed as the functions of spherical harmonics

with the convention if . The constant in the
second term can be further simplified as

The derivative with respect to is simply given as

Fig. 8. Metric tensor estimation. The metric tensors g are estimated by an-
alytically differentiating the weighted-SPHARM representation. The local area
element

p
det g measures the amount of area expansion and shrinking with re-

spect to the parameter space N .

This recursive relation reduces the computational time by recy-
cling the spherical harmonics used in estimating the SPHARM
coefficients.

The 3 2 Jacobian matrix of mapping from parameter
space to cortical surface is given by .
The Riemannian metric tensors are . The
component is given by with the vector inner
product . The Riemannian metric tensors measure the amount
of deviation of a cortical surface from a flat Euclidean plane.
If the cortical surface is flat, we obtain , the identity
matrix. The Riemannian metric tensors enable us to compute
the local area element . The area element measures the
amount of the transformed area in of the unit area in the
parameterized space via the mapping . Fig. 8 shows the
estimation of the metric tensors for a subject. Using the area
element, the total surface area of can be written as

Locally, surface deformation can be decomposed into the tan-
gential and the normal components with respect to a surface
normal vector [13]. At each point , we define local gray matter
volume as , where is cortical thick-
ness. Then the total gray matter volume is approximately given
as . The gray matter volume will change if ei-
ther the area element increases (tangential expansion) or cortical
thickness increases (normal expansion). Then the change in the
gray matter volume is the sum of the change in local area and
the change in cortical thickness [13]

The change in the local area element can be viewed as to con-
tributing to the tangential component of the gray matter volume
change.

The scale invariant area element is defined as ,
where the total surface area is estimated by summing
the area of triangles in a mesh. Fig. 9 shows the scale invariant
area element for randomly selected 12 subjects. Although the
scale invariant area element is invariant under affine scaling, it
is not invariant under different parameterizations such as con-
formal mappings [2], [24], [25], quasi-isometric mappings [48]
and area preserving mappings [6], [41], [43]. Considering these
parameterizations introduce area distortion, it is necessary to use
a parameterization invariant metric for a stable statistical anal-
ysis. This can be obtained by directly measuring the area expan-
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Fig. 9. Scale invariant area elements for randomly selected six control subjects
(top) and six autistic subjects (bottom). The color scale is thresholded at 1.5
(150%) for better visualization. With respect to the parameter spaceN , there is
up to 300% area expansion.

sion rate with respect to a template surface rather than the
parameter space . Consider a mapping from the template
to the cortical surface . The Jocobian of this mapping will be
noted as . The Jacobian is expected to be invariant under
different parameterizations and only depends on the registration
between the two surfaces. Let be the metric tensors of .
The area element of is . Then the
parameterization invariant measure is obtained by simply com-
puting the percentage change of area expansion with respect to
the template as

(14)

giving a local area related measure invariant under parameter-
ization. This quantity is called the surface area dilatation and
it is approximately the trace of the Jacobian determinant [12].
Our methodology does not work for area-preserving mappings
since the Jacobian determinant is 1. For this singular case, we
compute the Jacobian determinant directly from the surface reg-
istration result.

B. Statistical Inference on Unit Sphere

For the th subject ( ), we denote the cortical sur-
face as and its parameterization invariant surface Jacobian
determinant . Then we have the following general
linear model (GLM):

where is a mean zero Gaussian random field and is
a categorical dummy variable (0 for autism and 1 for control).
We are interested in localizing any group differences in the local
area element map by testing if for all . At
each fixed point , the test statistic is a two sample
-statistic with degrees-of-freedom. Since we need to

perform the test at every points , this becomes a multiple
comparison problem. We used the random field theory [50]–[52]
based thresholding to determine the statistical significance. The

-value for the one sided alternate hypothesis, i.e., , is
given by

(15)

where is the -dimensional resels of and is the -di-
mensional Euler characteristic (EC) density of a -field with

degrees of freedom, and is the observed two
sample -statistic at . The resels are

where FWHM is the full-width at half-maximum of the
weighted-SPHARM. The mathematical formulas for the
EC-densities are given in [51]. Although there are some vari-
ations in defining resels and EC-density through the literature
[50]–[52], we have used the convention used in [52]. Fig. 10
shows the resulting corrected -value map showing highly
localized regions of abnormal pattern in autistic subjects. The

-value map is projected on the average cortical surface of
38 subjects used in the study. We have used the threshold

corresponding to the corrected -value of 0.05.
In computing the corrected -value, it is necessary to compute

the FWHM but it is not trivial since there is no known close form
expression for the FWHM as a function of . So the FWHM is
computed numerically. The heat kernel can be simplified from
(9), via the harmonic addition theorem [3], as

(16)

where is the angle between and , i.e., . By fixing
to be the north pole, i.e., and while varying

for , we can
obtain the shape of heat kernel and its corresponding FWHM
numerically for each (Fig. 3). Table I shows the FWHM for
various bandwidths . In previous diffusion and heat kernel
smoothing [13], [11], between 20–30 mm FWHM was used.
The FWHM used in this study is extremely small since the
analysis is performed on a unit sphere rather than a larger cor-
tical surface. However, the comparable resels can be obtained by
using the bandwidth of corresponding to the FWHM
of 0.1257 mm.

V. APPLICATION TO AUTISM STUDY

Three Tesla -weighted MR scans were acquired for 16 high
functioning autistic and 12 control right-handed males. Sixteen
autistic subjects were diagnosed via The Autism Diagnostic In-
terview–Revised (ADI-R) used by a trained and certified psy-
chologist at the Waisman center at the University of Wisconsin-
Madison [17]. The average ages are and

for control and autistic group, respectively. Image intensity
nonuniformity was corrected using a nonparametric nonuniform
intensity normalization method [42] and then the image was
spatially normalized into the Montreal Neurological Institute
(MNI), Montreal, QC, Canada, stereotaxic space using a global
affine transformation [14]. Afterwards, an automatic tissue-seg-
mentation algorithm based on a supervised artificial neural net-
work classifier was used to classify each voxel into three classes:
CSF, gray matter, and white matter [32].

Triangular meshes for outer cortical surfaces were obtained
by the anatomic segmentation using the proximities (ASP)
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Fig. 10. The p-value map projected on the average weighted-SPHARM surface
of 28 subjects. The p-value is thresholded at 0.05 using the random field theory.
The focalized red (blue) regions show more (less) surface area in the autistic
subjects compared to the controls.

method [34], which is a variant of deformable surface algo-
rithms. The algorithm generates 40 962 vertices and 81 920
triangles with the identical mesh topology for all subjects. The
vertices indexed identically on two cortical meshes will have a
very close anatomic homology [13], [30], [34]. The mesh starts
as a sphere located outside the brain and is shrunk to match the
cortical boundary by minimizing a cost function that contains
the image, stretch, bending, and vertex-to-vertex proximity
terms. The deformation in the MNI stereotaxic coordinate
system combined with stretch constraints that limit the move-
ment of vertices, effectively enforces a relatively consistent
placement of points on the cortical surface. This provides the
same spherical parameterization at identically indexed vertices
across different cortical surfaces.

If we detect anatomical changes along the inner surface, it
is unclear if the changes are due to changes in gray or white
matters, or possibly both. On the other hand, changes in the
outer cortical surface are the direct consequence of changes in
the gray matter. Choosing the outer surface representation re-
duces the ambiguity of interpreting the statistical result. There-
fore, we have chosen the outer surface over the inner surface for
the study.

Once we obtained the outer cortical surfaces of 28 subjects,
the weighted-SPHARM representation were constructed. We
have used the bandwidth corresponding to de-
gree . The corresponding FWHM is 0.1257 mm. The
Fourier coefficients were estimated using the IRF algorithm.
The corresponding surface positions across two different
weighted-SPHARM surfaces are obtained by matching the
harmonics of the same degree and order via the SPHARM-cor-
respondence [9]. This is equivalent to obtaining the optimal
displacement, in the least squares sense, by taking the differ-
ence between the two weighted-SPHARM representations.

Using the weighted-SPHARM representation, area elements
and corresponding surface Jacobian determinants are analyti-
cally computed, and compared across subjects. The two sample
-statistic map is computed and its corrected -value map is pro-

jected on the average weighted-SPHARM surface of 28 subjects
(Fig. 10). The average surface is constructed by averaging the
Fourier coefficients within the spherical harmonic of the same
degree and order. The average surface serves as an anatomical
landmark for showing where group differences are located.

We performed the random field theory based multiple com-
parison correction on the computed -statistic map. Fig. 10
shows the regions of statistically significant group difference

thresholded at level (corresponding to the -value of
). Although there are other regions of group difference,

the left inferior frontal gyrus show the most significant group
difference.

VI. CONCLUSION

In this paper, we presented the weighted-SPHARM repre-
sentation and its application in TBM. The weighted-SPHARM
is used as a differentiable parametrization of the cortex. Based
on a new iterative formulation, spatial derivatives of the
weighted-SPHARM are computed and used to derive metric
tensors and an area element. The ratio of area elements is then
used to compute the surface Jacobian determinant invariant
under parameterization. The surface Jacobian determinant is
used in determining statistically significant regions of abnormal
cortical tissue expansion and shrinking for autistic subjects.

The weighted-SPHARM is a very flexible function estimation
technique for scalar and vector data defined on a unit sphere. We
have shown that the weighted-SPHARM is related to heat kernel
smoothing. Since heat kernel smoothing is related to isotropic
heat diffusion [9], [13], [39], we were able to connect our new
representation to the isotropic heat diffusion. This argument can
be further extended. By choosing a kernel induced from a par-
ticular self-adjoint partial differential equation (PDE), we can
construct the least squares estimation of the PDE without nu-
merically solving it [9]. This should serve as a spring board for
investigating other PDE-based data smoothing techniques in the
weighted-SPHARM framework.
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