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Abstract

We present a theoretical framework for smoothing diffusiontensor images. We formu-
late smoothing data along the white fiber tracks as iterated anisotropic Gaussian kernel
smoothing. The formulation is derived from the construction of the transitional prob-
ability of diffusion process. The smoothing is performed insuch a way that it smooth
data more along the most likely direction of water molecule diffusion direction. Statis-
tical properties of our smoothing are also presented.

1 Introduction

Diffusion tensor imaging (DTI) is a new magnetic resonance imaging technique tech-
nique that provides the directional information of water diffusion in the white matter
of the brain. The directional information is usually represented as a symmetric positive
definite3 × 3 matrix which is usually termed as thediffusion tensorD = (dij). The
water diffusion is assumed to follow diffusion equation

∂C

∂t
= ∇ · (D∇C), (1)

whereC is the concentration of water molecules [10].
The previous approaches in smoothing DTI data are usually formulated as the anisotropic

diffusion or the Laplace-Beltrami flow [3, 13, 17, 18, 21]. Inanisotropic diffusion frame-
work, the white fiber connectivity metric is given as a solution to equation (1) with the
initial condition where every voxel is zero except a seed region where it is given the
value one [3]. Then the value 1 at the seed region is diffused though the brain and the
numerical value that should be between 0 and 1 is taken as a probability of connection.
Mathematically it is equivalent as the Monte-Carlo random walk simulation with no
restriction [11].

Our kernel smoothing approach is different from [3] and [11]. In our kernel-based
approach, we construct anisotropic kernel that is the transition probability density of a
continues diffusion process and perform iterative anisotropic Gaussian kernel smooth-
ing. This formulation is simpler than solving equation (1) numerically. Further, unlike
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the Monte-Carlo random walk simulation approach, it alwaysgives the deterministic
results that does not change from one run to another. Due to the simplistic nature of our
smoothing formulation, it is also easier to derive its statistical properties.

As applications of our technique, we will present two examples. In the first example,
the transitional probability from a region in the corpus callosum will be computed. In
the second example, the fractional anisotropy (FA) map willbe smoothed out to show
that our smoothing will preserve FA while increasing the signal-to-noise ratio (SNR).

2 Transition probability

Let Pt(p,q) be thetransition probability densityof a particle going fromp to q under
anisotropic diffusion process. This is the probability density of the particle hittingq
at time t when the particle is atp at time 0. So we have

∫

Rn
Pt(p,x) dx = 1 and

Pt(p,q) = Pt(q,p). The transition probability serves as a mathematical analogue of
the water molecule concentrationC in equation (1). The solution to equation (1) with
the initial conditionp(0,x) = δ(x), the Dirac delta function, has been used as the
probabilistic representation of white fiber track connectivity in [3].

WhenD is constant, it can be shown thatPt(p,q) = Kt(p−q), then-dimensional
anisotropic Gaussian kernel defined as follows. First, letx = (x1, · · · , xn)′ ∈ R

n. The
n-dimensional isotropic Gaussian kernel is defined asK(x) = (2π)−n/2e−x

′
x/2 which

is the joint multivariate normal probability density function of n independent standard
normal random variables. Note that

∫

Rn
K(x) dx = 1. Then we define anisotropic

kernelKt via transformationh : x → (2
√

tD)−1/2x such that

Kt(x) = det−1
(∂h

∂x

)

K ◦ h(x) =
1

(4πt)n/2det1/2D
exp

(

− xD−1x

4t

)

.

The transformation matrix2
√

tD−1/2 is called the bandwidth matrix and controls the
concentration of the anisotropic kernel weights.Kt is a multivariate normal density
with the mean zero and the covariance matrix2tD.

For long distance transition probability, the computationis based on the Chapman-
Kolmogorov equation [14]. The transition probability density of a particle going from
p to q is the total sum of the probabilities of going fromp to q through all possible
intermediate pointsx ∈ R

n:

Pt(p,q) =

∫

Rn

Ps(p,x)Pt−s(x,q) dx (2)

for any 0 < s < t. The equation still hold in the case whens is either 0 ort, since
in that case one of the probability in the integral will become the Dirac-delta function
and in turn the integral collapse to the probability on the left side. Forx ∈ Bp, small
neighborhood centered aroundp, D can be considered constant and hencePt(p,q)

.
=

Kt(p − q). Therefore, the Chapman-Kolmogorov equation (2) can be written as

Pt(p,q)
.
=

∫

Bp

Ks(p − x)Pt−s(x,q) dx
∫

Bp

Ks(p − x) dx
. (3)
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Fig. 1. The transition probabilities from the center voxel to neighboring voxels. They form the
anisotropic kernel weights. Left: transition probability without restriction. Right: transition prob-
ability within FA > 0.4.

The denominator is introduced to correct for the truncationerror. Note that whens →
0 or Bp becomes large, the equation (3) converges to equation (2). Let us define a
truncated Gaussian kernel

K̃t(p − x) =
Kt(p − x)1Bp

(x)
∫

Bp

Kt(p − x) dx

where1Bp
(x) is the index function taking value 1 ifx ∈ Bp and 0 otherwise. Rewriting

the Chapman-Kolmogorov equation, for each fixedp, we have

Pt(p,q)
.
= K̃s ∗ Pt−s(p,q).

The convolution is with respect to the first argumentp. By lettingt = k∆t ands = ∆t,
we have iterative relationship:Pk∆t(p,q) = K̃∆t ∗ P(k−1)∆t. Solving this we have
k-fold convolution

Pk∆t(p,q) = K̃∆t ∗ K̃∆t ∗ · · · ∗ K̃∆t
︸ ︷︷ ︸

k times

∗P0(p,q), (4)

whereP0(p,q) = δ(p−q). For numerical implementation, we take the Kroneker-delta
function rather than the Dirac-delta function. We will denoting thek-fold convolution
asK̃

(k)
∆t . Note that

∫

Rn

Pk∆t(p,q) dq = 1

for all k.
The computation for the long distance transition probability can be viewed as smooth-

ing the initial probability distributionP0(p − q) = δ(p − q). In the numerical imple-
mentation, the initial probability 1 at the seed will be smoothed over all voxels.
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Fig. 2. The long distance transition probability from the seed voxel in the corpus callosum with
∆t = 0.1 andk = 40, 80, 120, 160 iterations. The scale in the top images is10

−3. The bottom
images are in natural log scale.

Figure 1 shows the transition probability from one voxel to the neighboring vox-
els computed from the anisotropic Gaussian kernel. In the left figure, the transition
probability is computed without constrain while the right figure shows the transition
probability computed within FA> 0.4. Figure 2 shows the long distance transition
probability. The bottom figure shows the transition probability represented in log-scale,
i.e.ρ = log Pt(p,q). ∆t = 0.1 with k = 40, 80, 120, 150 iterations are used.

3 Anisotropic kernel smoothing

Instead of smoothing the initial probability, the same approach can be used to smooth
noisy data in such a way that we smooth more along the direction the white matter
tracks and less across the tracks. Consider observationY which will be assumed to be

Y (x) = f(x) + ǫ(x),

wheref is the mean function andǫ is a zero mean Gaussian random field. We assume
thatǫ is an anisotropic field. We are interested in estimatingf via kernel smoothing. If
the signal is defined along the white matter tracks, it is necessary to incorporate the di-
rectional information of the white fiber into the shape of kernel. In computing the transi-
tional probability, we smoothed the initial probability distribution by the iterated kernel
smoothing framework. Instead smoothing probability, we will smooth observationY
along the white fiber tracks. We formulateanisotropic Gaussian kernel smoothingas
the convolution of observationY and kernelKt:

f̂(x) = Kt ∗ Y (x) =

∫

Rn

Kt(x − y)Y (y) dy. (5)

It can be shown that the above convolution is the unique solution to (1) with the initial
conditionC(x, 0) = Y (x) after timet for fixedD.
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Fig. 3. Transition probability from a single point in the corpus callosum witht = 0.1 andk =

8, 16, 24, 28 iterations. The scale in the top images is10
−3. The bottom images are in natural log

scale.

The anisotropic kernel smoothing can be viewed as a local regression. To see this,
consider partial differential operatorLψ = ∇ · (D∇ψ) and its eigenvalue problem
Lψ = λψ. SinceD is positive definite, we have ordered positive eigenvalues0 = λ0 ≤
λ1 ≤ λ2 ≤ · · · and corresponding eigenfunctionsψ0, ψ1, · · · . The eigenfunctionsψj

form an orthonormal basis ofL2(Rn), theL2 space of functions defined onRn. Then
it can be shown that

Theorem 1.

Kt ∗ Y (x) = arg min
h∈L2(Rn)

∫

Kt(x − y)
[

Y (y) − h
]2

dµ(y).

By expanding the integral as a quadratic inh: h2−2hKt∗Y +Kt∗Y 2 and differentiating
with respect toh, we obtains the minimum whenh(x) = Kt ∗ Y (x). This theorem is
also true for thel-dimensional finite subspaceHl ⊂ L2(Rn) that is spanned by the
finite basis functionsψ0, ψ1, · · · , ψl.

The following theorem shows the total amount of measurements is invariant under
smoothing.

Theorem 2 (Conservation of total signal).
∫

Rn

K
(k)
t ∗ Y dx =

∫

Rn

Y dx.

It can be easily seen by interchanging the order of integral
∫

Rn

Kt ∗ Y dx =

∫

Rn

∫

Rn

Kt(x − y)Y (y) dy dx

and notingKt is a probability distribution. Then the statement follows inductively. The
bias of the heat kernel smoothingEf̂ − f = Kt ∗ Y − f → 0 ast → 0. The total bias
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Fig. 4.Left: FA image. Middle: isotropic Gaussian kernel smoothing with 12mm FWHM. Right:
anisotropic Gaussian kernel smoothing with the equivalent filter size showing the preservation
of directional information. The advantage of the anisotropic smoothing is that it increase the
signal-to-noise ratio without sacrificing much of the directional characteristic of DTI.

always vanishes:
∫

Rn
[Ef̂(x)− f(x)] dx =

∫

Rn
[Kt ∗ f(x)− f(x)] dx = 0. This is the

consequence of Theorem 2.
We have applied our smoothing method on each component of diffusion tensorD =

(dij) for increasing the signal-to-noise ratio in the FA measure.The following theorem
guarantee the positive definiteness is preserved under smoothing.

Theorem 3 (Conservation of positive-definiteness).
If D = (dij) is positive definite,KH ∗ D = (Kt ∗ dij) is also positive-definite.

Note thatD is positive-definite ifx′Dx =
∑

ij xixjdij > 0 for all x = (x1, · · · , xn) ∈
R

n. Thenx′(KH ∗ D)x =
∑

ij xixjKt ∗ dij = Kt ∗
∑

ij xixjdij > 0 proving the
statement.

Figure 4 shows the FA images before and after smoothing. For comparison, we
performed both isotropic and anisotropic Gaussian kernel smoothing with the similar
bandwidth. The standard unit of isotropic smoothing bandwidth is the full width at the
half maximum (FWHM) of the Gaussian kernel. For anisotropic smoothing, we have
taken the average full width at the half maximum along the three principal axis of the
kernel ellipsoid.

4 Conclusions and Discussions

Gösslet al. [8] applied an isotropic Gaussian kernel smoothing with small filter size to
get the smooth, continuous representation of DTI data usinga linear state space model.
However, the isotropic smoothing tends to smooth out the directional characteristic of
the DTI data. Motivated by this, we have introduced a new method for smoothing data
along the white fiber tracks to get the continuous and smooth representation of the data
while preserving the directional characteristic of DTI by performing spatially adaptive
iterative anisotropic kernel smoothing. The kernel is constructed using the concept of
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the transitional probability of the diffusion process thatdirectly corresponds to the water
molecule diffusion in DTI.

Compared to the previous approaches of a Monte-Carlo simulation [11] or solving
a diffusion equation [5, 13, 21], our kernel method is simpler to implement numerically
and statistical properties can be investigated easily. To speed up the kernel smoothing,
one may use the decomposition scheme of Geusebroek [9].

An additional advantage of our smoothing formulation is that it can be interpreted
differential geometrically. Consider vector fieldV = (V1, · · · , Vn)′ that is the principal
eigenvector ofD. Suppose we wish to smooth data along the field in such a way that
we smooth more along the direction of the field. Let the flowx = ψ(t) corresponding
to the field is given by

dψ

dt
= V ◦ ψ(t).

This system of ordinary differential equations give a family of integral curves whose
tangent vector isV. The line element is

dψ2 = V 2
1 dx2

1 + · · · + V 2
n dx2

n

and the Riemannian metric tensor is given byG = (gij), gij = V 2
i δij . By matching

the bandwidth matrix of a general anisotropic kernel to the Riemannian metric tensor
proportionally, we get

Kt(x) = (4πt)−n/2
n∏

j=1

1

|Vj |
exp

(

−
x2

j

4tV 2
j

)

.

By introducing the scaling parametert, we left a room for adjusting the amount of
smoothing. The advantage of using only the principal eigenvectors would be the sim-
plicity of the implementation while the drawback is that themethod does not completely
utilize the full diffusion tensorD. To useD directly, we note thatD gives a natural Rie-
mannian metric tensor in the diffusion process, i.e.G = D [6]. This results in the same
anisotropic kernel we have introduced in computing the transition probability. A sim-
ilar Riemannian metric tensor approach in connection with DTI is given in [4, 12]. In
particular [12] matched the diffusion tensorD to the inverse of the metric tensorG and
applied it in computing the tensor-warped distances in the white fibers.
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