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Abstract

We present a theoretical framework for smoothing diffusersor images. We formu-
late smoothing data along the white fiber tracks as iterateid@tropic Gaussian kernel
smoothing. The formulation is derived from the construct6 the transitional prob-
ability of diffusion process. The smoothing is performedunh a way that it smooth
data more along the most likely direction of water molecufgugion direction. Statis-
tical properties of our smoothing are also presented.

1 Introduction

Diffusion tensor imaging (DTI) is a new magnetic resonamoagding technique tech-
nique that provides the directional information of watdfudiion in the white matter
of the brain. The directional information is usually repeted as a symmetric positive
definite3 x 3 matrix which is usually termed as tltiffusion tensotD = (d;;). The
water diffusion is assumed to follow diffusion equation

oCc
ot
whereC is the concentration of water molecules [10].

The previous approaches in smoothing DTI data are usuatyflated as the anisotropic
diffusion or the Laplace-Beltrami flow [3, 13, 17, 18, 21]dnisotropic diffusion frame-
work, the white fiber connectivity metric is given as a sautto equation (1) with the
initial condition where every voxel is zero except a seedoregvhere it is given the
value one [3]. Then the value 1 at the seed region is diffusedgh the brain and the
numerical value that should be between 0 and 1 is taken asalglity of connection.
Mathematically it is equivalent as the Monte-Carlo randoalknsimulation with no
restriction [11].

Our kernel smoothing approach is different from [3] and [1fiJour kernel-based
approach, we construct anisotropic kernel that is the itiangprobability density of a
continues diffusion process and perform iterative anigitr Gaussian kernel smooth-
ing. This formulation is simpler than solving equation (Liymerically. Further, unlike

V- (DVO), (1)



the Monte-Carlo random walk simulation approach, it alwgiyes the deterministic
results that does not change from one run to another. Due tsittfiplistic nature of our
smoothing formulation, it is also easier to derive its statal properties.

As applications of our technique, we will present two exaaspln the first example,
the transitional probability from a region in the corpusiaslim will be computed. In
the second example, the fractional anisotropy (FA) map lvéilsmoothed out to show
that our smoothing will preserve FA while increasing thensigto-noise ratio (SNR).

2 Transition probability

Let P,(p, q) be thetransition probability densityf a particle going fronp to q under
anisotropic diffusion process. This is the probability signof the particle hittingg

at timet when the particle is ap at time 0. So we havgfw Pi(p,x) dx = 1 and
Pi(p,q) = P:(q,p). The transition probability serves as a mathematical anelag

the water molecule concentratighin equation (1). The solution to equation (1) with
the initial conditionp(0,x) = J(x), the Dirac delta function, has been used as the
probabilistic representation of white fiber track conngttiin [3].

WhenD is constant, it can be shown thai(p, q) = K:(p — q), then-dimensional
anisotropic Gaussian kernel defined as follows. Firstlet (zq,--- ,z,) € R™. The
n-dimensional isotropic Gaussian kernel is define&@s) = (2r)~"/2e~*'*/2 which
is the joint multivariate normal probability density furat of n independent standard
normal random variables. Note th#t, K'(x) dx = 1. Then we define anisotropic
kernel K; via transformatiorh : x — (2v/tD)~1/2x such that

Oh 1 xD1x
_ 1= - - _
K;(x) = det ( )K o h(x) = ( ﬁ)n/2 E exp( m )

The transformation matri\/2D~1/2 is called the bandwidth matrix and controls the
concentration of the anisotropic kernel weighks, is a multivariate normal density
with the mean zero and the covariance maitik.

For long distance transition probability, the computai®based on the Chapman-
Kolmogorov equation [14]. The transition probability dép®f a particle going from
p to q is the total sum of the probabilities of going fromto q through all possible
intermediate points € R™:

Pi(p,q) = / Pp.X) P () dx @

for any0 < s < t. The equation still hold in the case wheris either O ort, since
in that case one of the probability in the integral will be@the Dirac-delta function
and in turn the integral collapse to the probability on tHesele. Forx € By, small
neighborhood centered aroupd D can be considered constant and heRdg, q) =
K:(p — q). Therefore, the Chapman-Kolmogorov equation (2) can beemras

pr Kq(p —x)Pi_s(x,q) dx
pr Ky (p —x) dx
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Fig. 1. The transition probabilities from the center voxel to neighboring voxelgyTorm the
anisotropic kernel weights. Left: transition probability without restrictioigh® transition prob-
ability within FA > 0.4.

The denominator is introduced to correct for the truncaéoor. Note that whem —
0 or B, becomes large, the equation (3) converges to equation €)us define a
truncated Gaussian kernel

2 Ki(p —x)1p, (%)
Kt(p - X) = pr Kt(p — X) dx

wherel g, (x) is the index function taking value 1if € B, and 0 otherwise. Rewriting
the Chapman-Kolmogorov equation, for each fixedve have

Pt(p;q) = Ks * Ptfs(pvq)'

The convolution is with respect to the first argumpnBy lettingt = kAt ands = At,
we have iterative relationshig?, a:(p,q) = Kas * P—1)a¢. Solving this we have
k-fold convolution

Pear(pya) = Kag * Ky % -+ % Kag %Po(p, ), (4)

k times

wherePy(p, q) = 6(p—q). For numerical implementation, we take the Kroneker-delta
function rather than the Dirac-delta function. We will déng the k-fold convolution
asK¥). Note that
PkAt(pvq) dq =1
Rn

for all k.

The computation for the long distance transition probghiian be viewed as smooth-
ing the initial probability distributionP,(p — q) = é(p — q). In the numerical imple-
mentation, the initial probability 1 at the seed will be sriem over all voxels.
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Fig. 2. The long distance transition probability from the seed voxel in the corgicsoan with
At = 0.1 andk = 40, 80, 120, 160 iterations. The scale in the top imaged @5 3. The bottom
images are in natural log scale.

Figure 1 shows the transition probability from one voxelhie heighboring vox-
els computed from the anisotropic Gaussian kernel. In thiefifpure, the transition
probability is computed without constrain while the righguie shows the transition
probability computed within FA> 0.4. Figure 2 shows the long distance transition
probability. The bottom figure shows the transition probghiepresented in log-scale,
i.e.p =log P(p,q). At = 0.1 with k& = 40, 80, 120, 150 iterations are used.

3 Anisotropic kernel smoothing

Instead of smoothing the initial probability, the same apgh can be used to smooth
noisy data in such a way that we smooth more along the direttie white matter
tracks and less across the tracks. Consider observatiwhich will be assumed to be

Y(x) = f(x) + e(x),

where f is the mean function andis a zero mean Gaussian random field. We assume
thate is an anisotropic field. We are interested in estimafinga kernel smoothing. If

the signal is defined along the white matter tracks, it is sg&gy to incorporate the di-
rectional information of the white fiber into the shape ofrladr In computing the transi-
tional probability, we smoothed the initial probabilitysttibution by the iterated kernel
smoothing framework. Instead smoothing probability, w# srinooth observatiort”
along the white fiber tracks. We formuladmisotropic Gaussian kernel smoothiag

the convolution of observatiori and kernelkK;:

fx) =K #Y(x) = . Ki(x —y)Y(y) dy. (5)

It can be shown that the above convolution is the unique isoltbd (1) with the initial
conditionC'(x, 0) = Y (x) after timet for fixed D.



Fig. 3. Transition probability from a single point in the corpus callosum witk 0.1 andk =
8,16, 24, 28 iterations. The scale in the top imaged s 3. The bottom images are in natural log
scale.

The anisotropic kernel smoothing can be viewed as a locaéssgn. To see this,
consider partial differential operatdlyy = V - (DV4) and its eigenvalue problem
L = Aip. SinceD is positive definite, we have ordered positive eigenvalues)y <
A1 < A2 < -+ and corresponding eigenfunctionts, ¢, - - - . The eigenfunctions);
form an orthonormal basis df?(R"), the L? space of functions defined d&*. Then
it can be shown that

Theorem 1.

Koy =arg min [ Kibxe—3) [y ()~ 8] duy)

By expanding the integral as a quadrati®irh? —2h K, Y + K, *Y 2 and differentiating
with respect tch, we obtains the minimum wheln(x) = K; * Y (x). This theorem is
also true for the-dimensional finite subspadd; c L?(R") that is spanned by the
finite basis functiongg, ¥, - - - , ;.

The following theorem shows the total amount of measuresigrivariant under
smoothing.

Theorem 2 (Conservation of total signal).

K® sy dx= | Ydx.
R™ R™

It can be easily seen by interchanging the order of integral

Ky xY dx = / Ki(x—y)Y(y) dy dx
Rn n ]Rn
and notingK; is a probability distribution. Then the statement followductively. The

bias of the heat kernel smoothifitf — f = K, xY — f — 0 ast — 0. The total bias
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Fig. 4. Left: FA image. Middle: isotropic Gaussian kernel smoothing with 12mm RVRight:
anisotropic Gaussian kernel smoothing with the equivalent filter sizeisbaWe preservation
of directional information. The advantage of the anisotropic smoothingaisithncrease the
signal-to-noise ratio without sacrificing much of the directional charetieof DTI.

always vanishesf,, [Ef(x)— f(x)] dx = Jgn K % f(x) — f(x)] dx = 0. This is the
consequence of Theorem 2.

We have applied our smoothing method on each componento$idih tensoD =
(d;;) for increasing the signal-to-noise ratio in the FA measiife following theorem
guarantee the positive definiteness is preserved underntBimgo

Theorem 3 (Conservation of positive-definiteness).
If D = (d;;) is positive definiteKy « D = (K * d;;) is also positive-definite.

Note thatD is positive-definite ik’ Dx = Zij zix;d;; > 0forallx = (21, ,2,) €
R™. Thenx’(KH * D)X = Zij xiijt * dij = K * Z” Q?,‘.deij >0 proving the
statement.

Figure 4 shows the FA images before and after smoothing. &mparison, we
performed both isotropic and anisotropic Gaussian kenmeloshing with the similar
bandwidth. The standard unit of isotropic smoothing baiithwis the full width at the
half maximum (FWHM) of the Gaussian kernel. For anisotropioething, we have
taken the average full width at the half maximum along thedtprincipal axis of the
kernel ellipsoid.

4 Conclusions and Discussions

Gosslet al. [8] applied an isotropic Gaussian kernel smoothing withIgfifgr size to
get the smooth, continuous representation of DTI data wsiigear state space model.
However, the isotropic smoothing tends to smooth out thectiwnal characteristic of
the DTI data. Motivated by this, we have introduced a new weflor smoothing data
along the white fiber tracks to get the continuous and smagttesentation of the data
while preserving the directional characteristic of DTI lrforming spatially adaptive
iterative anisotropic kernel smoothing. The kernel is taurtded using the concept of



the transitional probability of the diffusion process ttiaectly corresponds to the water
molecule diffusion in DTI.

Compared to the previous approaches of a Monte-Carlo sfronlfl1] or solving
a diffusion equation [5, 13, 21], our kernel method is simpdemplement numerically
and statistical properties can be investigated easilyp&ed up the kernel smoothing,
one may use the decomposition scheme of Geusebroek [9].

An additional advantage of our smoothing formulation i ihaan be interpreted
differential geometrically. Consider vector fieWd = (V, - - -, V,,)’ that is the principal
eigenvector ofD. Suppose we wish to smooth data along the field in such a way tha
we smooth more along the direction of the field. Let the flow «(¢) corresponding
to the field is given by

dip

This system of ordinary differential equations give a famaf integral curves whose
tangent vector i%/. The line element is

dy? = V2 dad + -+ Vida?

and the Riemannian metric tensor is given®y= (g;),9:;; = V;*4;;. By matching
the bandwidth matrix of a general anisotropic kernel to tiefnnian metric tensor
proportionally, we get

| a?
K;(x) = (4rt) /QHWeXp(—m).
=1 J

By introducing the scaling parametemwe left a room for adjusting the amount of
smoothing. The advantage of using only the principal eigetors would be the sim-
plicity of the implementation while the drawback is that thethod does not completely
utilize the full diffusion tensoD. To useD directly, we note thaD gives a natural Rie-
mannian metric tensor in the diffusion process,@e= D [6]. This results in the same
anisotropic kernel we have introduced in computing thesitaom probability. A sim-
ilar Riemannian metric tensor approach in connection with @ given in [4,12]. In
particular [12] matched the diffusion tensbrto the inverse of the metric tens@rand
applied it in computing the tensor-warped distances in thiteAfibers.
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