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Abstract

We present a new tensor-based morphometric framework
that quantifies cortical shape variations via the concept of
local area element. The local area element is obtained from
the Riemannian metric tensors, which are, in turn, obtained
from the smooth functional parametrization of a triangle
cortical mesh. For the smooth parametrization, we have de-
veloped a novel weighted spherical harmonic (SPHARM)
representation. The weighted-SPHARM differs from the
classical SPHARM in a regularizing cost function. The
classical SPHARM is the asymptotic limit of the weighted-
SPHARM. Further, for a specific choice of weights, the
weighted-SPHARM is shown to be the finite least squares
approximation to the solution of an isotropic heat diffusion
on a unit sphere. The main aims of this paper are to present
a theoretical framework for the weighted-SPHARM, and to
show how it can be used in the tensor-based morphometry.
As an illustration, the methodology has been applied in the
problem of detecting abnormal cortical regions in a clinical
population.

1 Introduction

In many previous cortical morphometric studies, cortical
thickness have been mainly used to quantify cortical shape
variations in a population [12, 15, 16]. The cortical thick-
ness measures the amount of gray matter in vertical direc-
tion on a cortical surface. We present a new tensor-based
morphometry (TBM) that quantifies the amount of gray
matter along the tangential direction of the cortex by com-

puting the local area element. The local area element is
obtained from the Riemannian metric tensors, which are,
in turn, computed from the smooth functional parametriza-
tion of a cortical mesh. For this purpose, we present a novel
weighted spherical harmonic (SPHARM) representation
that differs from the classical SPHARM [9, 19] in regu-
larizing a cost function. Unlike the classical SPHARM,
we weight the measurement such that the closer measure-
ments are weighed more. The weighted-SPHARM is re-
lated to both the classical SPHARM and an isotropic heat
diffusion on a unit sphere as asymptotic limits.

Let us overview some of previous studies that are related
to our study. Gerig et al. (2001) used the mean squared dis-
tance (MSD) of SPHARM coefficients in quantifying ven-
tricle surface shape in a twin study [9]. The distance based
metrics widely used in deformation-based morphometry
[1] do not directly quantify the amount of tissue growth
and atrophy. For directly measuring the amount of tissue
volume, the Jacobian determinant of the deformation field
is a better metric [3]. Our local area element is the differ-
ential geometric generalization of the Jacobian determinant
in Riemannian manifolds. So the area element will be able
to quantify the cortical tissue growth/atrophy directly.

Shen et al. (2004) used the principal compo-
nent analysis technique on the SPHARM coefficients of
schizophrenic hippocampal surface in reducing the data di-
mension [19]. Then they performed the linear discriminant
analysis and support vector machines in surface classifi-
cation. In a related work, Gu et al. (2004) presented the
SPHARM representation as a surface compression tech-
nique, where the main geometric feasures are encoded in
the low degree spherical harmonics, while the noise will
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be in the high degree spherical harmonics [10]. It will
be shown that our weighted-SPHARM more penalizes the
high degree spherical harmonics compared to the classical
SPHARM.

Bulow (2004) used spherical harmonics in developing
an isotropic heat diffusion via Fourier transform on a unit
sphere as form of hierarchical surface representation [2].
We will show that our weighted-SPHARM representation
is related to Bulow’ heat diffusion asymptotically.

Many SPHARM literatures [2, 9, 10, 19] use the both
real- and imaginary-valued spherical harmonics. However,
the coefficients of imaginary-valued spherical harmonic
basis do not serve any purpose in SPHARM representa-
tion other than the mathematical simplicity of manipulating
them. In our study, we will only use real-valued spherical
harmonics with different normalizing constants. This has
the effect of decreasing the number of coefficients to be
estimated by half.

Once the differentiable smooth parametrization of the
cortex is established by the weighted-SPHARM, we can
compute the Riemmanian metric tensors and local area
element. Many previous differential geometric cortical
modeling is based on locally fitting a quadratic polyno-
mial [6, 8]. The SPHARM-based global parametrization
tend to be computationally expensive compared to the lo-
cal quadratic polynomial based parametrization while pro-
viding more accuracy and flexibility for hierarchical repre-
sentation.

2 Preliminary

In this section, we introduce mathematical notations and
basic concepts in SPHARM that are needed in describing
the weighted-SPHARM.

2.1 Surface parametrization

Let M and S2 be a cortical surface and a unit sphere
respectively. M and S2 are realized as meshes with
more than 80,000 triangle elements. It is natural to as-
sume the cortical surface to be a smooth 2-dimensional
Riemannian manifold parameterized by two parameters
[7]. This parametrization is constructed in the follow-
ing way. A point p = (x, y, z) ∈ M is mapped onto
u = (u1, u2, u3) ∈ S2 via a deformable surface algo-
rithm that preserves anatomical homology and the topo-
logical connectivity of meshes (Figure 1).

Let U be the inverse mapping fromS2 to M. Point
u = (u1, u2, u3) ∈ S2 is parameterized by the spherical
coordinates:

(u1, u2, u3) = (sin θ cosϕ, sin θ sinϕ, cos θ)

Figure 1: Cortical manifoldM (left) is mapped onto unit
sphereS2 (right) via a deformable surface algorithm that
preserves anatomical homology [15]. For the visualiza-
tion purpose, the mean curvature was computed and thresh-
olded to better represent sulci and gyri.

with (θ, ϕ) ∈ N = [0, π] ⊗ [0, 2π). This mapping will be
denoted asX, i.e. X : N → S2. Then we have composite
mappingZ = U ◦X : N → M. Z is a 3D vector and it
will be stochastically modeled as

Z(θ, ϕ) = ν(θ, ϕ) + ε(θ, ϕ), (1)

whereν is unknown true differentiable parametrization and
ε is a random vector field on unit sphere. The computation
of the Riemannian metric tensors and local area element
require estimating differentiable functionν.

2.2 Spherical harmonic representation

The basis functions on the unit sphere are given as the
eigenfunctions satisfying∆f + λf = 0, where∆ is the
spherical Laplacian:

∆ =
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1
sin2 θ

∂2

∂2ϕ
.

There are2l+1 eigenfunctions, denoted asYlm(−l ≤ m ≤
l), corresponding to the same eigenvalueλ = l(l+1). Ylm

is called thespherical harmonicof degreel and orderm
[5, 21]. For the completeness of the exposition, we write
the explicit form of the2l+1 spherical harmonics of degree
l as

Ylm =





clmP
|m|
l (cos θ) sin(|m|ϕ), −l ≤ m ≤ −1,

clm√
2
P 0

l (cos θ), m = 0,

clmP
|m|
l (cos θ) cos(|m|ϕ), 1 ≤ m ≤ l,

where clm =
√

2l+1
2π

(l−|m|)!
(l+|m|)! and Pm

l is the associated
Legendre polynomials of orderm. Unlike many previous
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SPHARM literatures [2, 9, 10, 19] that used the complex-
valued spherical harmonics, we use only real-valued spher-
ical harmonics with different normalizing constants since
they are more convenient for a real-valued stochastic model
(1).

Forf, h ∈ L2(S2), the space of square integrable func-
tions inS2, the inner product is defined as

〈f, h〉 =
∫ 2π

0

∫ π

0

f(θ, ϕ)h(θ, ϕ) dµ(θ, ϕ),

where Lebesgue measuredµ(θ, ϕ) = sin θ dθ dϕ. Con-
sider subspace

Hk = {
k∑

l=0

l∑

m=−l

βiYlm : βi ∈ R} ⊂ L2(S2),

which is spanned by up tok-th degree spherical harmonics.
Then the least squares estimation, denoted asf̂ , of f ∈
L2(S2) in the subspaceHk is given by

f̂(p) =
k∑

l=0

l∑

m=−l

〈f, Ylm〉Ylm(p).

This can be stated as the following theorem.
Theorem 1.

k∑

l=0

l∑

m=−l

〈f, Ylm〉Ylm = arg min
h∈Hk

∫

S2

[
f(q)−h(q)

]2
dµ(q).

This theorem is a well known result and mainly refered as
the genearlized Fourier series expansion. This is the basis
of the classical SPHARM representation of closed anatom-
ical boundaries [9, 10, 19].

3 Weighted-SPHARM

3.1 Basic theory

The classical SPHARM is only one possible representa-
tion of functional data measured on the unit sphere. We
will present a more general representation technique in
the framework of a local kernel regression [11]. We will
call this technique as theweighted-SPHARMsince the co-
efficients of SPHARM are additionally weighted by the
eigenvalues of a kernel. It will be shown that the clas-
sical SPHARM is asymptotically related to the weighted-
SPHARM.

First, we start with the spectral representation of pos-
itive definite kernel inS2. Any positive definite kernel
K(p, q) in S2 can be represented as

K(p, q) =
∞∑

l=0

l∑

m=−l

λlmYlm(p)Ylm(q), (2)

Figure 2: The schematic comparison of the classical
SPHARM and weighted-SPHARM. The classical ap-
proach estimates functional dataf by minimizing the in-
tegrated squared distance betweenf and smooth func-
tion h. One the other hand, the weighted-SPHARM es-
timatesf locally at each fixedp by minimizing the inte-
grated weighted squared distance betweenf andh(p). The
weighted-SPHARM can be viewed as a local kernel regres-
sion [11].

where eigenvaluesλ00 ≥ λ1m1 ≥ λ2m2 ≥ · · · ≥ 0 satisfy
∫

S2
K(p, q)Ylm(q) dµ(q) = λlmYlm(p).

This is the special case of the Mercer’s theorem [5]. With-
out loss of generality, we assume the kernel is normalized
in such a way that

∫

S2
K(p, q) dµ(q) = 1. (3)

At each fixed pointp, smooth representationh of func-
tional dataf is searched in the subspaceHk that minimizes
the integral of the weighted squared distance betweenf
andh. This is formulated as the following regularization
problem:

min
h∈Hk

∫

S2
K(p, q)

[
f(q)− h(p)

]2
dµ(q). (4)
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See Figure 2 for the schematic comparison of the classical
SPHARM and the weighed-SPHARM. The minimizer of
(4) is given by the following theorem.
Theorem 2.

k∑

l=0

l∑

m=−l

λlm〈f, Ylm〉Ylm

= arg min
h∈Hk

∫

S2
K(p, q)

[
f(q)− h(p)

]2
dµ(q).

Proof. Let

h(p) =
k∑

l=0

l∑

m=−l

βlmYlm(p) ∈ Hk.

The integral can be written as

I(β00, β1−1, β10, β11, · · · , βkk)

=
∫

S2
K(p, q)

[
f(q)−

k∑

l=0

l∑

m=−l

βlmYlm(p)
]2

dµ(q).

Since the functionalI is quadratic inβlm, the minimum
exists and it is obtained when

∂I

∂βl′m′
= 0 for all l′ andm′. (5)

Then solving equation (5) with equation (3), we have

Yl′m′(p)
∫

S2
K(p, q)f(q) dµ(q) (6)

=
d∑

l=0

l∑

m=−l

βlmYlm(p)Yl′m′(p). (7)

Integrate the both sides of the above equation with respect
to measureµ(p). Then using the othonormal conditition

∫

S2
Yij(p)Ylm(p) dµ(p) =

{
1, i = l, j = m,
0, otherwise,

we obtain

βl′m′ =
∫

S2
f(q) dµ(q)

∫

S2
Yl′m′(p)K(p, q) dµ(p)

=
∞∑

l=0

l∑

m=−l

λlm

∫

S2
f(q)Ylm(q) dµ(q)

×
∫

S2
Ylm(p)Yl′m′(p) dµ(p)

= λlm

∫

S2
f(q)Yl′m′(q) dµ(q).

This proves the statement.

Now we show what happens as the dimension ofHk

increases. Define kernel smoothing as the integral convo-
lution

K ∗ f(p) =
∫

S2
f(q)K(p, q) dµ(q). (8)

Then it can be shown that the weighted-SPHARM con-
verges to kernel smoothing (8) as the dimension of sub-
spaceHk increases. This can be stated differently as
Theorem 3.

K ∗ f(p) = arg min
h∈L2(S2)

∫

S2
K(p, q)

[
f(q)− h(p)

]2
dµ(q).

Proof. The weighted-SPHARM representation can be rear-
ranged as

k∑

l=0

l∑

m=−l

λlm〈f, Ylm〉Ylm(p)

=
∫

S2
f(q)

k∑

l=0

l∑

m=−l

λlmYlm(p)Ylm(q) dµ(q)

→
∫

S2
f(q)K(p, q) dµ(q) ask →∞

The last line is from equation (2). On the other hand, from
the completeness of Hilbert spaceL2(S2),

lim
k→∞

arg min
h∈Hk

∫

S2
K(p, q)

[
f(q)− h(p)

]2
dµ(q)

= arg min
h∈L2(S2)

∫

S2
K(p, q)

[
f(q)− h(p)

]2
dµ(q).

This proves the statement. Theorem 3 connects the
weighted-SPHARM to kernel smoothing as the asymptotic
limit.

We briefly explain the numerical implementation issues.
We only need to numerically compute the Fourier coeffi-
cients〈f, Ylm〉 in the weighted-SPHARM. The eigenval-
uesλlm are given analytically from an analytical kernel.
The computation for the Fourier coefficients are based on
the direct numerical integration over high resolution trian-
gle meshes with more than 80,000 triangles and the aver-
age inter-vertex distance of 0.0189 mm. The accuracy of
the weighed-SPAHRM is only restricted to the mesh res-
olution and the Riemann sum approximation should con-
verges to the integral as the mesh resolution increases.

Let n be the total number of nodes in the mesh. Assume
triangle elementsTk1 , · · · , Tkm are adjacent to each other
at nodeqk (1 ≤ k ≤ n). Then the Fourier coefficients
〈f, Ylm〉 is approximated as a limit of the Riemann sum
over triangle elements:

∫

S2
f(q)Ylm(q) dµ(q) .=

1
3

n∑

k=1

km∑

i=1

f(qk)Ylm(qk)|Tki |.
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Figure 3: Top: the original inverse mappingU is displayed
in S2. It shows the coordinate functions projected ontoS2.
Bottom: the weighed-SPHARM representation of the coor-
dinate functions. The color scale for coordinates is thresh-
olded at±45 mm to better show the smoothing pattern of
the weighted-SPHARM representation.

The weighted-SPHARM is constructed by iteratively
adding each term in Theorem 2.

3.2 Gauss-Weistrass kernel and heat flow

For the choice of eigenvalues

λlm = e−l(l+1)σ, (9)

the corresponding kernel is called theGauss-Weistrass ker-
neland it will be denoted as

Kσ(p, q) =
∞∑

l=0

l∑

m=−l

e−l(l+1)σYlm(p)Ylm(q). (10)

The subscriptσ is introduced to indicate the dependence
of the additional parameter. Asσ → ∞, λlm → 1 and the
weighted-SPHARM representation converges to the classi-
cal SPHARM representation. It is interesting to note that
even though the regularizing cost functions are different in
Theorem 1 and Theorem 2, they are related asymptotically.

Another interesting property is observed by noting that
Kσ ∗f is the unique solution to the following isotropic heat
diffusion

∂g

∂t
= ∆g, g(p, t = 0) = f(p) (11)

at timet = σ2/2 [4, 18]. This is easily seen from the fact
that Kσ is the Green’s function of equation (11). From
this property combined with Theorem 3, we conclude that

the weighted-SPHARM is the finite approximation to the
isotropic heat flow inS2.

We have compared the numerical implementation of the
weighted-SPHARM result against the analytical solution
of (11). Letf = el′(l′+1)Yl′m′ be an analytic test function.
ThenKσ ∗ f can be written as

el′(l′+1)
∞∑

l=0

l∑

m=−l

e−l(l+1)σYlm(p)
∫

S2
Ylm(q)Yl′m′(q) dµ(q)

= el′(l′+1)
∞∑

l=0

l∑

m=−l

e−l(l+1)σYlm(p)δll′δmm′ = Yl′m′(p),

where δll′ is the Kroneker’s delta. The table 1 shows
the comparative result forl′ = 20 and selectivem′ with
σ = 0.01 and degreek = 20. The third column shows
the numerical computation of integral

∫
S2 Y 2

l′m′(p) dp =
1 showing the accuracy up to 3 decimal places. This
shows our Riemann sum approximation provides suffi-
ciently good accuracy, which depends on the mesh reso-
lution. The fourth column shows the average difference
between the weighed-SPHARM and the heat diffusion.

3.3 Riemannian metric tensor estimation

The weighted-SPHARM estimation̂ν of the unknown true
parametrizationµ in equation (1) is given by

ν̂ =
k∑

l=0

l∑

m=−l

λlm〈Z, Ylm〉Ylm.

For this study, we used eigenvalue (9) corresponding to the
Gauss-Weistrass kernel. The estimation of the Riemannian
metric tensors requires partial derivatives ofν̂. Denoting
partial differential operators as∂1 = ∂θ and∂2 = ∂ϕ, we
have derivative estimations

∂iν̂ =
k∑

l=0

l∑

m=−l

λlm〈Z, Ylm〉∂iYlm(θ, ϕ),

l′ m′ integral difference
20 4 1.0001 9.7029 · 10−5

20 10 0.9999 1.6212 · 10−4

20 20 0.9999 −1.1174 · 10−4

Table 1: Numerical accuracy of the weighted-SPHARM
with σ = 0.01 for degree 20, and order 4, 10 and 20. The
third column checks if〈Yl′m′ , Yl′m′〉 = 1. The last col-
umn shows the average difference between the weighted-
SPHARM and the expected heat diffusion. In each case
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Figure 4: Riemannian metric tensor estimation. The metric
tensorsgij are estimated by differentiating the weighted-
SPHARM representation. Afterwards the local area ele-
ment

√
det g is computed. The local area element mea-

sures the amount of are expansion and shrinking with re-
spect toS2.

The partial derivatives of spherical harmonics are com-
puted iteratively. The associated Legendre polynomials in
the spherical harmonic basis are defined as

Pm
l (cos θ) = sinm θ

dm

dxm
Pl(x)

∣∣∣
x=cos θ

,

where Pl(x) is the Legendre polynomials defined in
(−1, 1) with P0(x) = 1 and P1(x) = x. Then for
0 ≤ m ≤ l − 1,

∂θdPm
l (cos θ) = m sinm−1 θ cos θ

dm

dxm
Pl(x)

∣∣∣
x=cos θ

− sinm+1 θ
dm+1

dxm+1
Pl(x)

∣∣∣
x=cos θ

= m cot θPm
l (cos θ)− Pm+1

l (cos θ).

For m = l, sincePl is thel-th order polynomial, the sec-
ond term vanishes. A similar recursive relationship for an
alternate definition for the associated Legendre polynomial
is given in [13]. Based on this iterative relation, we can
compute the partial derivatives

∂θYlm =





clm∂θP
|m|
l (cos θ) cos(|m|ϕ), −l ≤ m ≤ −1,
clm√

2
∂θP

0
l (cos), m = 0,

clm∂θP
|m|
l (cos θ) sin(|m|ϕ), 1 ≤ m ≤ l

Figure 5: Plot ofσ (horizontal) vs. FWHM (vertical) show-
ing the nonlinear functional relationship. Table 2. shows
FWHM for differentσ.

and

∂ϕYlm =





|m|clmP
|m|
l (cos θ) cos(|m|ϕ), −l ≤ m ≤ −1,

0, m = 0,

−|m|clmP
|m|
l (cos θ) sin(|m|ϕ), 1 ≤ m ≤ l.

Then the Riemannian metric tensors are estimated as
g = (gij) = 〈∂iν̂, ∂j ν̂〉 and the area element

G(θ, ϕ) =
√

det g =
√

g11 · g22 − g2
12.

The area element measures the transformed area inM of
the unit square of the parameterized spaceN via mapping
ν.

4 Statistical inference inS2

For thei-th subject (1 ≤ i ≤ m), we denote the cortical
manifold asMi and its area element asGi(θ, ϕ).

The area element is influenced by the global brain size.
If we enlarge the cortical coordinates by the factor ofr, the
area element changes by the factor ofr2. So it is necessary
to normalizeGi such that it is invariant under scaling. The
affine scale invariant area element is given by

G̃i(θ, ϕ) =
4πG(θ, ϕ)

µ(Mi)
,

whereµ(Mi) is the total cortical area. If we enlarge the the
cortical coordinates by the factor ofr, µ(Mi) increases by
the factor ofr2 makingG̃i invariant under affine scaling.
The constant4π is multiplied so that the normalization is
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with respect to the total surface area ofS2. Then we have
the following general linear model (GLM):

G̃i(θ, ϕ) = α0 + α1 · agei + α2(θ, ϕ) · groupi + ε(θ, ϕ),

whereε is a mean zero Gaussian random field.agei and
groupi are the age and a categorical dummy variable (0 for
autism and1 for control) respectively for subjecti. Then
we test if there is any group difference in the local area
element measure by testing

H0 : α2(θ, ϕ) = 0 for all θ andϕ.

vs. H1 : α2(θ, ϕ) 6= 0 for someθ andϕ.

At each point(θ, ϕ), aF -statistic with 1 andn− 3 degrees
of freedom, denoted asF (θ, ϕ) is used as a test statistic.
TheF -statistic is constructed as a ratio of the residual sum
of error of model fit ofH0 andH1. Since we need to per-
form the test at every(θ, ϕ), this becomes a multiple com-
parison problem. We used the random field theory [20, 22]
based thresholding to determine the statistical significance.

The probability of obtaining false positives (α-level) for
the one sided alternate hypothesis in given by

P (sup F (θ, ϕ) ≥ Fα) =
2∑

i=0

Li(S2)
FWHMi

ρi(y),

where Li is the i-th Lipschitz-Killing curvature or
Minkowski functional [20], andρi is thei-dimensional EC-
density [22]. FWHM denotes the full width of the half
maximum of smoothing kernelKσ used in the weighted
sphearical harmonic representation. For the unit sphere,
the Lipschitz-Killing curvatures are

L0(S2) = 2, L1(S2) = 0, andL2(S2) = 2π.

The EC-densities are

ρ0(y) =
∫ ∞

y

Γ(m
2 )

((m− 1)π)1/2Γ(m−1
2 )

(
1+

y2

m− 1

)−m/2

dy,

ρ2(y) =
4 ln 2

(2π)3/2

Γ(m
2 )y

(
1 + y2

m−1

)−(m−2)/2

(m−1
2 )1/2Γ(m−1

2 )
.

4.1 Computing FWHM

The computation for the FWHM of the Gauss-Weistrass
kernel inS2 is not trivial due to the fact there is no known
close form expression for the FWHM as a function ofσ.
So the FWHM is computed numerically.

The Gauss-Weistrass kernel can be simplified from
equation (10), via the harmonic addition theorem [21], as

Kσ(p, q) =
∞∑

l=0

2l + 1
4π

e−l(l+1)σP 0
l (cosϑ), (12)

whereϑ is the angle betweenp andq. Using the vector
inner product·, the angle can be written ascos ϑ = p · q.
The maximum of the Gauss-Weistrass kernel is obtained
whenϑ = 0 and it is given by

k∑

l=0

2l + 1
4π

e−l(l+1)σ.

Now we fix ϕ = 0 and letp be the north pole, i.e.p =
(0, 0, 1). By varying q = (sin ϑ, 0, cos ϑ) for 0 ≤ ϑ =
cos−1(p · q) ≤ π, we haveYlm = 0 if m 6= 0. Note
P 0

l (1) = 1 for all l. Then we solve numerically forθ in

1
2

k∑

l=0

2l + 1
4π

e−l(l+1)σ =
k∑

l=0

2l + 1
4π

e−l(l+1)σP 0
l (cos ϑ).

The FWHM is then2ϑ. Table 2 in Figure 5 show the
nonlinear relationship betweenσ and the corresponding
FWHM for k = 20.

5 Application to autism study

Three TeslaT1-weighted MR scans were acquired for 16
autistic and 12 control right handed males. 16 autistic sub-
jects were diagnosed with high functioning autism. The
average ages are17.1 ± 2.8 and 16.1 ± 4.5 for control
and autistic group respectively. Image intensity nonuni-
formity was corrected using nonparametric nonuniform
intensity normalization method and then the image was
spatially normalized into the Montreal neurological insti-
tute (MNI) stereotaxic space using a global affine trans-
formation. Afterwards, an automatic tissue-segmentation
algorithm based on a supervised artificial neural network
classifier was used to classify each voxel as cerebrospinal
fluid (CSF), gray matter, or white matter [14]. Triangu-
lar meshes for outer cortical surfaces were obtained by a
deformable surface algorithm [15]. The mesh starts as an
ellipsoid located outside the brain and is shrunk to match
the cortical boundary. By performing an affine transform
on this ellipsoid, we obtainS2 mesh, which is used in the
weighted-SPHARM.

The segmented cortical meshes are normalized via a
nonlinear surface-to-surface registration [17]. Cortical cur-
vatures of two surfaces are mapped onto the sphere and
they are aligned by solving a regularization problem that
tries to minimize the discrepancy between two curvatures
while maximizing the smoothness of the alignment in such
a way that the pattern of gyral ridges are matched smoothly.
This regularization mechanism produces a smooth defor-
mation field, with very little folding. The deformation field
is parameterized using a triangulated mesh and the algo-
rithm proceeds in a coarse-to-fine manner, with four levels
of mesh resolution. The surface-to-surface registration is

7



Figure 6: Demonstration of cortical surface normalization
in S2 showing the nonlinear alignment of central and su-
perior temporal sulci for 149 subjects. Left: before nor-
malization. Right: after normalization. The probability of
matching increases after normalization.

completely automated and has been validated in [17]. Fig-
ure 6 demonstrates the effectiveness of this surface regis-
tration algorithm by showing the increased matching prob-
ability of superior temporal and central sulci for 149 sub-
jects.

Afterwards, the weighted-SPHARM representation is
used as an estimate for differentiable smooth parametriza-
tion of the meshes. We used parametersk = 20 and
σ = 0.001. The corresponding FWHM is 0.2262 mm. The
Riemannian metric tensors and the area element are com-
puted simultaneously. Based on the general linear model
framework, the statistical parametric map (F-statistic) is
computed and projected on bothS2 and the average cor-
tical surface (Figure 7). The average cortical surface is
constructed by averaging the anatomically corresponding
vertices in the meshes [4]. It serves as an anatomical land-
mark for showing where signals are detected. Then we
performed the random field theory based multiple compar-
ison correction on the F-statistic atα = 0.05 level but we
did not detect any statistically significant cortical regions
of local area difference although we observed maximum
F-value of 9.3 (uncorrected p-value of 0.0054) at the left
temporal lobe.

6 Conclusions and discussions

In this paper, we presented a theoretical framework
for the weighted-SPHARM and its application in TBM.
The weighted-SPHARM is used as a differentiable
parametrization of the cortex. This enable us to com-
pute the Riemannian metric tensors and local area element.
The local area element is used in determining the statis-
tical significance of the abnormal cortical tissue expan-

Figure 7: The final statistical analysis result. TheF statis-
tic is computed at every vertices of the triangle mesh in
S2 (left) and mapped onto the average cortex (right). The
average cortex serves as an anatomical reference. The ran-
dom field theory based multiple comparison atα = 0.05
did not show any significant result although the maximum
signal is detected at the left temporal lobe (sup F = 9.3
corresponing to uncorrectedp-value of 0.0054).

sion/shrinking for a clinical population.
The weighted-SPHARM is a very flexible functional es-

timation technique for scalar and vector data defined inS2.
It was shown that the solution to the isotropic heat diffusion
in S2 is the asymptotic limit of the weighted-SPHARM for
the choice of the Gauss-Weistrass kernel. We can extend
this argument further. By choosing the Green’s function of
a particular partial differential equation (PDE) as the ker-
nel in the weighted-SPHARM, we can construct the finite
least squares estimation of the solution of the PDE with-
out numerically solving PDE using the finite element tech-
nique. This should serve as a spring board for investigating
the wide variety of PDE based data smoothing technique in
the local polynomial regression framework [11].
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