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Abstract. We present a novel weighted spherical harmonic (SPHARM)
representation of cortical surfaces and its application to a cortical thick-
ness analysis in autism. The weighted-SPHARM is a hierarchical smooth-
ing technique given as the solution to a parabolic partial differential equa-
tion. The weighted-SPHARM generalizes the classical-SPHARM with
an additional parameter that modulates the high frequency content of
data. We introduce a new algorithm called the iterative residual fitting
(IRF) and address the problem of determining the optimal degree of the
weighted-SPHARM. As an illustration, our unified framework has been
applied in detecting the regions of abnormal behavior-structure correla-
tion in a group of autistic subjects.

1 Introduction

The cortical thickness has been widely used as an anatomical index for quantify-
ing the amount of gray matter in the brain. Magnetic resonance images (MRI)
are segmented into three tissue types: cerebrospinal fluid (CSF), grey matter,
and white matter. The CSF/grey matter interface is called the outer cortical
surface while the grey/white matter interface is called the inner cortical surface.
The distance between the outer and the inner surfaces is the cortical thickness.
The cortical surfaces are represented as triangle meshes that are constructed
from deformable surface algorithms [4] [5] [8]. Then the cortical thickness is
mainly estimated by computing the shortest distance between vertices of the
two triangle meshes [5] [8]. The mesh construction, discrete thickness compu-
tation procedures introduce substantial noise in the thickness measure (Figure
3). So it is necessary to increase the signal-to-noise ratio (SNR) and smoothness
of data for the subsequent statistical analysis. For smoothing cortical data, dif-
fusion equation based methods have been used [1] [2] [3]. The shortcoming of
these approaches is the need for numerically solving the diffusion equation possi-
bly via the finite element technique. This is an additional image processing step
on top of the cortical thickness estimation. In this paper, we will present a more
direct novel approach of representing the cortical surfaces using the weighted



spherical harmonics (SPHARM). Since the cortical surfaces are represented as
a weighted linear combination of smooth basis functions, the resulting corti-
cal thickness measurements are smooth bypassing the data smoothing problem.
The weighed-SPHARM differs from the traditional SPHARM [6][7][9] as a more
general representation that is formulated as the solution to a parabolic par-
tial differential equation (PDE). We will refer the traditional SPHARM as the
classical-SPHARM to distinguish it from our new approach.

The theoretical construction and the numerical implementation issues are
explained in the sections 2 and 3 respectively. Then the technique is applied in
detecting the regions of abnormal structure and behavior correlation in a group
of autistic subjects in the section 4.

2 Weighted spherical harmonic representation

For the parametrization (u1, u2, u3) = (sin θ cos ϕ, sin θ sin ϕ, cos θ) of the unit
sphere S2 with p = (θ, ϕ) ∈ N = [0, π] ⊗ [0, 2π), the corresponding spherical
Laplacian is given by ∆ = 1

sin θ
∂
∂θ

(
sin θ ∂

∂θ

)
+ 1

sin2 θ
∂2

∂2ϕ . Let ∆2s+1 be the (2s+1)-
th iterated spherical Laplacian. The even orders are not considered for the con-
vergence of the subsequent weighted-SPHARM. The eigenvalues and eigenfunc-
tions of the iterated spherical Laplacian satisfies ∆2s+1Ylm + λ2s+1

l Ylm = 0.
There are 2l + 1 eigenfunctions Ylm(−l ≤ m ≤ l), corresponding to the same
eigenvalue λ2s+1

l = [l(l + 1)]2s+1 [10]. Ylm is called the spherical harmonic of
degree l and order m and given explicitly in [6][7][9][10].

For f, h ∈ L2(S2), the space of square integrable functions in S2, the inner
product is defined as 〈f, h〉 =

∫ 2π

0

∫ π

0
f(θ, ϕ)h(θ, ϕ) dµ(θ, ϕ), where dµ(θ, ϕ) =

sin θ dθ dϕ. The norm is defined as ‖f‖ =
√
〈f, f〉. With respect to the inner

product, the spherical harmonics form a complete orthonormal basis in L2(S2).
So for any f ∈ L2(S2), we have the Fourier series expansion of f . This is stated
as Theorem 1. Let Hk = {∑k

l=0

∑l
m=−l βlmYlm : βlm ∈ R} be the subspace

spanned by up to k-th degree spherical harmonics.

Theorem 1.
∑k

l=0

∑l
m=−l flmYlm = arg minh∈Hk

‖f−h‖2, where flm = 〈f, Ylm〉
are the Fourier coefficients.
This is the basis of the classical-SPHARM representation for anatomical bound-
aries that are topologically equivalent to a unit sphere [6] [7] [9]. An anatomical
boundary is mapped to a unit sphere and its Cartesian coordinates v(θ, ϕ) =
(v1, v2, v2) are represented by SPHARM in component wise fashion as vi =∑k

l=0

∑l
m=−l f

i
lmYlm. As an alternative to this classical-SPHARM, we present

the weighted version of the SPHARM. The weighted-SPHARM can be formu-
lated in a PDE-based image smoothing framework. As a way to smooth data in
S2, we are interested in the following parabolic-PDE:

∂tg + ∆2s+1g = 0, g(p, t = 0) = f(p), (1)

where f is the given functional data to be smoothed. Increasing the order of the
iterated Laplacian has the effect of attenuating the high frequency content of the



Fig. 1. Plots of the square-root of the mean SSE of the weighted-SPHARM for vary-
ing t (0.01, 0.001, 0.0001, 0). t = 0 is the classical-SPHARM. The cortical surfaces
correspond to the weighted-SPHARM at 85-th order for different t. As t → 0, the
weighed-SPHARM converges to the classical-SPHARM.

data faster. When s = 0, we have the usual isotropic heat diffusion. The solution
to this Cauchy problem is solved by the eigenfunction expansion technique and
presented as the following theorem:

Theorem 2. The unique solution to the Cauchy problem (1) is given by

g(p, t) =
∞∑

l=0

l∑

m=−l

e−λ2s+1
l tflmYlm(p). (2)

We will refer the finite expansion
∑k

l=0

∑l
m=−l e

−λ2s+1
l tflmYlm(p) as the weighted-

SPHARM. When t = 0, the weighted-SPHARM collapses to the classical-SPHARM.
The parameter t is a smoothing parameter that determines the amount of
smoothing. This can be seen by reformulating the weighted-SPHARM as ker-
nel smoothing by rearranging the summation and the integral as g(p, t) =∫

S2 f(q)Kt(p, q) dµ(q), where the positive symmetric kernel is rewritten as

Kt(p, q) =
∞∑

l=0

l∑

m=−l

e−λ2s+1
l tYlm(p)Ylm(q). =

1
4π

∞∑

l=0

(2l + 1)e−λ2s+1
l tP 0

l (cos p · q).

The simplification from the double summation to the single summation is due to
the harmonic addition theorem [10]. The kernel Kt obtains its maximum when



Fig. 2. Plots showing the P-value of the optimal degree selection procedure for different
t. The iterative procedure stops when the P-value ≥ 0.01. The outer cortical surfaces
are the corresponding optimal weighted-SPHARM. The optimal-SPHARM is obtained
at k = 18 (t = 0.01), k = 42 (t = 0.001), k = 52 (t = 0.0005), k = 78 (t = 0.0001).

p · q = 0. The full width at the half maximum (FWHM) of the kernel, needed in
the statistical analysis later, is obtained numerically by solving for p · q in

1
2

k∑

l=0

2l + 1
4π

e−λ2l+1
l t =

k∑

l=0

2l + 1
4π

e−λ2s+1
l tP 0

l (p · q).

Then FWHM is 2(p · q), which is a nonlinear function of t. For instance, when
s = 0 and t = 0.001, FWHM is 0.2262.

3 Numerical Implementation

The previous numerical approach for constructing SPHARM has been mainly
based on solving a system of linear equations called the normal equations [6] [9].
Theorem 1 shows that the SPHARM coefficients can be numerically estimated
via the least squares estimation technique as follows. At each point pi in S2, we
have a normal equation f(pi) =

∑k
l=0

∑l
m=−l flmYlm(pi). This is given as the

following matrix form:



f(p1)
...

f(pn)




︸ ︷︷ ︸
F

=




Y0,0(p1) Y1,−1(p1) Y1,0(p1) · · · Yk,−k(p1) · · · Yk,k(p1)
...

...
...

. . .
...

. . .
...

Y0,0(pn) Y1,−1(pn) Y1,0(pn) · · · Yk,−k(pn) · · · Yk,k(pn)




︸ ︷︷ ︸
Y0 Y1 ··· Yk




f00

...
fkk




︸ ︷︷ ︸
b

.

Then the least squares estimation of the Fourier coefficients flm is given by
b̂ = (Y′Y)−1Y′F, where Y = [Y0Y1 · · ·Yk] and Yj is the submatrix consisting



of the k-th degree harmonics only. The problem with this widely used formulation
is that the size of the matrix Y is n×(k+1)2 which can possibly reach the RAM
memory limit of the most desktop computers for large n and k. This is mainly
true for many cortical surface extraction algorithms that produces no less than
n > 100, 000 nodes [5]. The problem with the extremely large matrix can be
overcome by decomposing the subspace Hk into smaller subspaces. We will refer
our new algorithm as the iterative residual fitting (IRF). Since the classical-
SPHARM is a special case of the weighted version, we will only describe the
weighed version.

3.1 Iterative residual fitting algorithm

Decompose the subspace Hk into smaller subspaces as the direct sum: Hk =
I0 ⊕ I1 · · · ⊕ Ik, where Ij = {∑j

m=−j βjmYjm(p) : βlm ∈ R} is the subspace
spanned by the l-th degree spherical harmonics only. Then at given degree j, we
estimate the 2j + 1 Fourier coefficients fj,−j , · · · , fj,j simultaneously within the
smaller subspace Ij . Instead of fitting the original data f , we fit the the (j−1)-th
degree residual defined as ej−1 = f −∑j−1

l=−(j−1)

∑l
m=−l e

−λ2s+1
l tflmYlm in the

normal equation. This can be formulated as

Theorem 3.
∑j

m=−j fjmYjm = minh∈Ij ‖ej−1 − h‖2.
Based on Theorem 3, we have the following iterative algorithm that hierarchically
constructs the weighted-SPHARM from lower to higher degrees.

Algorithm: Iterative Residual Fitting (IRF)
Let j = 0 and f00 ←

∑n
i=1 f(pi)Y00(pi)∑n

i=1 Y 2
00(pi)

.

While j ≤ k do

j ← j + 1.
ej−1 ← f −∑j−1

l=−(j−1)

∑l
m=−l e

λ2s+1
l tflmYlm.

(fj,−j , · · · , fj,j)′ ← (YjYj)−1Yj(ej−1(p1), · · · ej−1(pn))′

Let the sum of squared error(SSE) corresponding to the j-th degree be
SSEj =

∑n
i=1 e2

j (pi). Figure 1 shows the plot of the square-root of the mean
SSE given by

√
SSEj/n for 5 ≤ j ≤ 85 for various t. As t decreases, the

weighted-SPHARM converges to the classical-SPHARM (t = 0). At t = 0.0001,
the difference is negligible.

3.2 Optimal weighted-SPHARM

Although increasing the degree of SPHARM increases the goodness-of-fit, it
also increases the number of parameters to be estimated quadratically. So it is
necessary to find the optimal degree where the goodness-of-fit and the number
of parameters balance out. Consider the following (k − 1)-th degree model

f(pi) =
k−1∑

l=0

l∑

m=−l

e−λ2s+1
l tflmYlm(pi) + ε(pi), i = 1, · · · , n



Fig. 3. Cortical thickness projected onto the average outer cortex for various t and
corresponding optimal degree: k = 18(t = 0.01), k = 42(t = 0.001), k = 52(t =
0.0005), k = 78(t = 0.0001). The average cortex is constructed by averaging the coef-
ficients of the weighted-SPHARM. The highly noise first image shows thickness mea-
surements obtained by computing the distance between two triangle meshes [blinded].

where ε is Gaussian random fields. Testing if the k-th degree model is better than
the previous (k−1)-th degree model can be done by testing H0 : fkm = 0 for all -
k ≤ m ≤ k. Then under the null hypothesis, the test statistic is

F =
(SSEk−1 − SSEk)/(2k + 1)

SSEk−1/(n− (k + 1)2)
∼ F2k+1,n−(k+1)2

the F distribution with 2k +1 and n− (k +1)2 degrees of freedom. We compute
the F statistic at each degree and stop the IRF procedure if the corresponding
P-value first becomes bigger than 0.01 (Figure 2).

4 Autism structure and behavior correlation
We have applied the weighted-SPHARM in detecting the regions of the abnor-
mal abnormal cortical thickness and behavior correlation in a group of autistic
subjects. We briefly describe how the analysis is done.
Subjects. 12 high functioning autistic (HFA) and 12 normal control (NC) subjects
used in this study were screened to be right-handed males. Age distributions for
HFA and NC are 15.93 ± 4.71 and 17.08 ± 2.78 respectively. High resolution
anatomical magnetic resonance images (MRI) were obtained using a 3-Tesla GE
SIGNA scanner with a quadrature head RF coil. A three-dimensional, spoiled
gradient-echo (SPGR) pulse sequence was used to generate T1-weighted images.
Cortical thickness. Both the outer and inner cortical surfaces were extracted for
each subject via a deformable surface algorithm [blinded]. Surface normalization
is performed by minimizing an objective function that measures the global fit
of two surfaces while maximizing the smoothness of the deformation in such
a way that the pattern of gyral ridges are matched smoothly [blinded]. The
weighted-SPHARM with s = 0, t = 0.001 is used for representing both surfaces
with the optimal degree determined to be k = 42. Then the cortical thick-
ness was computed for each subject. If vi =

∑k
l=0

∑l
m=−l e

−λltf i
lmYlm are the

coordinates for the outer surface and wi =
∑k

l=0

∑l
m=−l e

−λltgi
lmYlm are the



Fig. 4. Top: scatter plots of reaction time (vertical) vs. thickness (horizontal). The
plots corresponded to the circled regions in the partial correlation map in the mid-
dle. Middle: Partial correlation maps for each group projected onto the average outer
cortex Bottom: P-value map showing the regions of abnormal behavior-structure cor-
relation in autism.

coordinates for the inner surface, the distance between two surface is measured
by [

∑k
l=0

∑l
m=−l e

−λlt(gi
lm−f i

lm)2]1/2 [6] [blinded]. Figure 3 shows the thickness
projected onto the average outer cortex.
Behavioral measure. The subjects were asked to decide whether a picture of a
human face was either emotional (happiness, fear or anger) or neutral (showing
no obvious emotion) by pressing one of two buttons. The faces were black and
white photographs taken from the Karolinska Directed Emotional Faces set. The
response time (ms) for HFA and NC are 1329.8± 206.7 and 1110.9± 182.3 and
respectively. The response time has been previously used as a behavioral index
for characterizing autism [blinded].
Partial correlation maps. In correlating the behavioral measure with the cortical
thickness, we removed the confounding effect of age and the total outer cortical
surface area using the partial correlation mapping technique. Let Y = (Y1, Y2)
be cortical thickness and response time, and X = (X1, X2) be age and to-
tal cortical area respectively. The covariance matrix of (Y, X)′ is denoted as(

ΣY Y ΣY X

ΣXY ΣXX

)
. The partial covariance of Y given X is ΣY Y −ΣY XΣ−1

XXΣXY =

(σij). The partial correlation ρYi,Yj |X = σij/
√

σiiσjj measures the correlation
between variables Yi and Yj while removing the effect of variables X. If we



denote the partial correlations as ρ1 and ρ2 for HFA and NC respectively, we
test if H0 : ρ1(p) = ρ2(p) for all p ∈ S2. Based on the Fisher transform, the

test statistic under H0 is Z(p) = 1
2 ln

(
1+r1
1−r1

· 1−r2
1+r2

)
/
√

1
n1−4 + 1

n2−4 , where ri

is the sample partial correlation for group i. Z(p) is an approximate Gaus-
sian random field. The type I error α for testing one sided test is then given
by: α = P

(
supp∈∂Ω Z(p) > h

)
≈ ∑2

d=0 φd(∂Ω)ρd(h), where φd are the d-
dimensional Minkowski functionals of ∂Ω and ρd are the d-dimensional Eu-
ler characteristic (EC) density of correlation field [11]. The Minkowski func-
tionals are φ0 = 2, φ1 = 0, φ2 = area(S2)/2 = 2π. The EC densities are:

ρ0(h) =
∫∞

h
1√
2π

e−u2/2 du and ρ2(h) = 4 ln 2he−h2/2

(2π)3/2FWHM2 , where FWHM is com-

puted numerically to be 0.2262 for s = 0 and t = 0.001. The resulting P-value
map is given in Figure 4 showing the regions of statistically significant abnormal
behavior-structure correlation in autism.

5 Conclusion

We have presented a new unified cortical analysis framework using the weighted-
SPHARM that extends the traditional SPHARM. The weighed-SPHARM is for-
mulated as the solution to a parabolic PDE in such a way that the time parameter
controls the amount of smoothing in estimating the underlying functional data.
To address the computational issues, we developed the IRF algorithm with the
optimal degree selection technique. The methodology has been successfully ap-
plied in localizing the cortical regions of abnormal behavior-structure correlation
in autism.
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