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Abstract. Although the voxel-based morphometry (VBM) has been
widely used in quantifying the amount of gray matter of the human brain,
the optimal amount of registration that should be used in VBM has not
been addressed. In this paper, we present a novel multi-scale VBM using
the weighted spherical harmonic (SPHARM) representation to address
the issue. The weighted-SPHARM provides the explicit smooth func-
tional representation of true unknown cortical boundary. Based on this
new representation, the gray matter tissue density is constructed using
the Euclidean distance map from a voxel to the estimated smooth corti-
cal boundary. The methodology is applied in localizing abnormal cortical
regions in a group of autistic subjects.

1 Introduction

Voxel-based morphometry (VBM) is a fully automated image analysis technique
allowing identification of regional differences in gray matter and white matter
between groups of subjects without a prior region of interest in brain magnetic
resonance imaging. VBM as implemented in the statistical parametric mapping
(SPM) software (http://www.fil.ion.ucl.ac.uk/spm) starts with normalizing each
structural MRI to the standard SPM template and segmenting it into white
and gray matter and cerebrospinal fluid (CSF) based on a Gaussian mixture
model [1] [4]. In a slightly different formulation, the tissue density is generated
by convolving the binary mask of the tissue with a Gaussian kernel [9]. The
resulting density maps are warped into a normalized space and the density are
compared across subjects. A modified version of VBM has been also performed
along the cortex, where a fraction of gray matter within a ball of radius 15mm
is taken as gray matter density [11].

The objective of VBM is to compare regional difference in relative tissue
concentration. It is not necessary for image registration used in VBM to match
every cortical features exactly, but merely corrects for global brain shape dif-
ferences. If the image registration was exact, all the segmented images would
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Fig. 1. SPHARM coefficients up to degree k = 78 of the outer surface of a subject
(vertical direction). The horizontal direction shows the different order within the same
degree arranged from −l to l. Left: average of the autistic group. Middle: average of
the normal controls. Right: difference between autistic and the normal control groups.

appear identical and no statistically significant differences would be detected
[1]. The amount of image registration needed in VBM has been a contentious
issue that has yet to be addressed quantitatively [2].

We propose a new methodological framework that enable us to address this
issue using the weighted spherical harmonic (SPHARM) representation [?]. The
traditional SPHARM is a global parametrization technique that has been ap-
plied in anatomical boundaries such as the hippocampus, the amygdala and
the brain cortex [6] [7] [10]. The weighed-SPHARM generalizes the traditional
SPHARM by weighting each spherical harmonic basis such that the resulting
representation becomes the solution of an isotropic diffusion on a unit sphere.
The weighted-SPHARM is more suitable than the traditional SPHARM when
the realization of the anatomical boundaries, as triangle meshes, are noisy [?].
Since the weighted-SPHARM provides the explicit functional representation of
the gray matter boundary, it can be used as a basic descriptive tool for comparing
the performance of VBM at different image registration scales.

2 Weighted SPHARM of cortex

Parameterization. Let Mo and Mi be the outer (pial) and inner surfaces of the
brain respectively. The unit sphere S2 is realized as a triangle mesh and deformed
to match the outer and inner boundaries in such a way that anatomical homology
and the topological connectivity of meshes are preserved [8]. The mesh coordi-
nates for the outer surface is then parameterized by the polar angle θ ∈ [0, π]
and the azimuthal angle ϕ ∈ [0, 2π) as v(θ, ϕ) = (v1(θ, ϕ), v2(θ, ϕ), v2(θ, ϕ)). The
inner surface is parameterized similarly. These discrete coordinate functions are
further parameterized by the SPHARM representation [6] [7] [10]. In SPHARM,
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the coordinates are given as

vi(θ, ϕ) =

k∑

l=0

l∑

m=−l

f i
lmYlm(θ, ϕ),

where Ylm is the spherical harmonics of degree m and order l, and f i
lm is the

SPHARM coefficient given by

f i
lm =

∫

S2

vi(θ, ϕ)Ylm(θ, ϕ) sin θdθdϕ.

The weighted-SPHARM weights the SPHARM coefficients further such that

vi(θ, ϕ) =
k∑

l=0

l∑

m=−l

e−l(l+1)tf i
lmYlm(θ, ϕ). (1)

The weighted-SPHARM contains the traditional SPHARM as a special case
when t = 0. Figure 1 displays the SPHARM coefficients up to degree k = 78
with t = 0.0001. Anatomical variabilities are encoded in these coefficients. The
iterative residual fitting (IRF) algorithm is used for the fast estimation of the
SPHARM coefficients [3]. The weighted-SPHARM can be viewed as a smoothing
process as stated as the following theorem.
Theorem 1. The equation (1) is the solution of an isotropic diffusion equation

∂u

∂t
= ∆u on S2, u(θ, ϕ, t = 0) = vi(θ, ϕ),

where ∆ is the spherical Laplacian.
Stochastic modeling. We model vi stochastically by assuming f i

lm to follow in-
dependent normal distribution N(µi

lm, σ2
l ) for coordinate i, degree l, and order

m. It is natural to assume the equal variability within the same order. This
assumption is equivalent to modeling vi as the sum of signal plus noise:

vi(θ, ϕ) =

k∑

l=0

l∑

m=−l

e−l(l+1)tµi
lmYlm(θ, ϕ) + ǫ(θ, ϕ),

where ǫ is a zero mean Guassian random field with a certain isotropic covariance
function. The mean and the variance of the surface is given by

Evi(θ, ϕ) =
k∑

l=0

l∑

m=−l

e−l(l+1)tµi
lmYlm(θ, ϕ) (2)

Vvi(θ, ϕ) =

k∑

l=0

l∑

m=−l

e−2l(l+1)tσ2
l Y 2

lm(θ, ϕ)
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Fig. 2. Multi-scale representation of surface normalization. α = 0 shows the surface of
one particular subject while α = 1 is the average surface of 24 subjects. As α increases,
the amount of registration increases toward the average surface.

The total variability of the surface is then measured by

∫

S2

Vvi sin θdθdϕ =
k∑

l=0

l∑

m=−l

e−2l(l+1)tσ2
l .

The optimal degree k is automatically determined by testing the null hy-
pothesis H0 : µi

lm = 0 for all − l ≤ m ≤ l in an iterative fashion for each l. For
t = 0.0001, the optimal degree is determined to be k = 78. Once we determined
the optimal degree, we can estimate the unknown parameters µi

lm and σ2
l with

the sample mean and the sample variance of the SPHARM coefficients. If

vij(θ, ϕ) =

k∑

l=0

l∑

m=−l

e−l(l+1)tf ij
lmYlm(θ, ϕ)

is the weighted-SPHARM for the j-th subject (1 ≤ j ≤ n), the maximum
likelihood estimation of parameters µi

lm and σ2
l is

µ̂i
lm =

1

n

n∑

j=1

f ij
lm, σ̂2

l =
1

(2l + 1)(n − 1)

l∑

m=−l

n∑

j=1

(f ij
lm − µi

lm)2.

The inner surface is modeled similarly.
Surface normalization. In the weighted-SPHARM, the surface normalization is
straightforward. Given the weighted-SPHARM representation of two surfaces vi

and wi, the deformation field di that minimizes the integral of the squared errors
of registering vi to wi is simply given by the following theorem.
Theorem 2. wi − vi = arg mindi∈L2(S2)

∫
S2(wi − di(vi))

2 sin θdθdϕ,
The minimization is taken over L2(S2), the space of all square integrable func-
tions. Unlike other surface registration algorithms that has been used in regis-
tering surfaces , it is not necessary to consider an additional cost function that
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Fig. 3. Left: The contour plot of the average Euclidan distance map from outer and
inner surfaces. The color bar is the number of voxels in mm. Middle: gray matter
probability map. Right: Gaussian kernel smoothing of the probability map with 10
mm FWHM.

guarantees the smoothness of the deformation field since wi −vi is already a lin-
ear combination of smooth spherical harmonic basis. Based on this idea, we can
register any weighted-SPHARM surface to another weighted-SPHARM surface.

Let v̄i be the sample mean surface obtained by replacing µi
lm with the esti-

mator µ̂i
lm in equation (2). This surface can serve as a template for the weighted-

SPHARM based surface registration. The displacement from the surface vij to
the template surface is ∆vij = v̄i−vij . Consider the surface vj(α) = vij+α∆vi =
(1−α)vij + αv̄i, which is the trajectory of the deformation from vij to the tem-
plate v̄i for 0 ≤ α ≤ 1 (Figure 2). When α = 0, vj(α) is surface of the j-th
subject while when α = 1, it is the template surface. The parameter α controls
the amount of registration from the coarse-to-fine scale. The total variability at
each scale is computed to be

∫

S2

V(vj) sin θ dθdϕ = c(α)
k∑

l=0

l∑

m=−l

e−2l(l+1)tσ2
l ,

where c(α) = n−1
n2 α2 +

(
1 − n−1

n α
)2

is the decreasing function for 0 ≤ α ≤ 1
(Figure 5). The larger the α value, the smaller the image registration variability
across the subjects with respect to the template.
Gray matter density. We construct the the gray matter density using the 3D

Euclidian distance map of the surfaces at each scale. For the outer surface Mo,
the distance map at each voxel x is defined as disto(x) = miny∈Mo

‖x − y‖,
where ‖ ·‖ is the Euclidian norm. The minimum is found using a nearst neighbor
search algorithm on an optimized k-D tree [5]. Similarly we define the distance
map for the inner surface Mi as disti(x) = miny∈Mi

‖x− y‖. Then the average
distance map is defined as dist(x) = (dist0(x) + disti(x))/2. The minimum of
dist is always obtained in the middle of the outer and the inner surfaces. Then
the gray matter density is defined as

p(x) = exp
[
−

dist2i (x) + dist2o(x)

2ρ2

]
,
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Fig. 4. Mean gray matter density for autism (left) and normal controls (middle) at scale
α = 0. The right image is the density difference between the two groups. Anatomical
variabilities are encoded as the probability of a voxel belonging to the gray matter
class.

where parameter ρ2 controls the spread of density. In this study, we used ρ2 = 3.
The gray matter density is always between 0 and 1 and it obtains its maximum in
the interior of the gray matter region, where the average distance map obtains the
minimum. Then this map is further convoluted with the 3D Gaussian kernel K
with 10mm FWHM (full width at the half maximum) to increase the smoothness.
The convoluted density map K ∗ p(x) is stochastically modeled as a Gaussian
random field. The average distance map is illustrated in Figure 4 for a single
subject.

3 Multi-scale voxel-based morphometry

Subjects. We used the constructed gray matter density as an anatomical index for
localizing the regions of abnormal amount of gray matter in a group of autistic
subjects. n1 = 12 high functioning autistic (HFA) and n2 = 12 normal control
(NC) subjects were screened to be right-handed males. Age distributions for
HFA and NC are compatible at 15.93± 4.71 and 17.08± 2.78 respectively. High
resolution anatomical magnetic resonance images (MRI) were obtained using a 3-
Tesla GE SIGNA scanner with a quadrature head RF coil. A three-dimensional,
spoiled gradient-echo (SPGR) pulse sequence was used to generate T1-weighted
images. Image intensity nonuniformity was corrected using the nonparametric
nonuniform intensity normalization method [3] and then the image was spatially
normalized into the Montreal neurological institute (MNI) stereotaxic space us-
ing a global affine transformation.
Multiscale VBM. Multi-scale representation vi(α) at 11 different scales between
0 and 1 with 0.1 increment and its corresponding gray matter density map are
constructed. At each scale, we constructed the convoluted density map for each
subject. Then the two sample t-test statistic T with the equal variance assump-
tion is computed on the convoluted gray matter density maps. At each voxel
x, T (x) is distributed as a student t with ν = n1 + n2 − 2 degrees of freedom.
Based on the random field theory [12], the corrected p-value is computed using
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Fig. 5. Left: plot of image registration variability c(α) over scale α. Middle: plot of
sup T statistic value over scale. Right: plot of corrected p-value over scale. At α = 0.4,
the minimum p-value of 0.0904 is obtained. At other scales the corrected p-value is
larger than 0.1. For 90% statistical significance, we may have missed the significant
signal at the other scales.

Fig. 6. The final statistical parametric map (t statistics) projected onto the cross sec-
tions of the average gray matter density map at scale α = 0.4. The positive t statistical
values above 1.5 are shown. The cross sections are taken at where the maximum of t

statistics occurs.

the following formula:

P
(

sup
x∈Mg

T (x) > h
)
≈

Vol(Mg)

FWHM3

(4 ln 2)3/2

(2π)2

(ν − 1

ν
h2 − 1

)(
1 +

h2

ν

)−
ν−1

2

,

where Vol(Mg) is the volume of the gray matter Mg. The optimal scale is deter-
mined to be the one that provides the maximal discrepancy between the groups.
Hence, the maximum corrected p value can be chosen as a criteria for deter-
mining the optimal scale for VBM. The supx∈GM T (x) and its corresponding
corrected p-value are plotted in Figure 5 showing the optimal scale is obtained
when α = 0.4. Figure 6 shows the final statistical parametric map of the opti-
mally chosen VBM.
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4 Conclusion

We have presented a new multi-scale VBM that incorporates the convoluted
nature of the gray matter using the weighted-SPHARM representation. The
explicit mathematical representation of the weighed-SPHARM based surface-
to-surface registration enabled us to construct the trajectory of the deformation
field. This trajectory is used as a parameter for controlling the amount of image
registration in a multi-scale fashion. Then the optimal VBM is chosen that gives
the maximal discrimination between the two clinical groups.
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