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Abstract. Whole brain tractography studies of can generate up to and
over half-a-million tracts per brain which form the basis for constructing
edges in an extremely large 3D graph. Currently there is no agreed-upon
method for constructing the brain anatomical connectivity graphs out of
large number of white matter tracts. In this paper, we present an effi-
cient framework for building and analyzing graphs using tractography in
a normalized space. We then apply the constructed graphs in a classifi-
cation setting of autistic vs. typically developing individuals and obtain
prediction accuracy of 87%. This suggests that efficiently characteriz-
ing anatomical connectivities of the brain may be used to characterize
discriminant patterns in different populations.

1 Introduction

White matter which forms the basis of structural connectivity has been shown to
be abnormal for example in regions like corpus callosum, in various autism stud-
ies [1, 2]. Characterizing global anatomical connectivity will significantly impact
the study of brain pathology and such developmental disorders [3]. There is a
growing interest of mapping out anatomical connectivity at a macroscale in vivo
with the advancement of various Diffusion MRI acquisition techniques. A graph
is a mathematical representation of a real-world complex system and is defined
by a collection of nodes (vertices) and edges (links) between pairs of nodes. The
nature of nodes and links in individual brain networks may be determined by
combinations of brain mapping methods, anatomical parcellation schemes, and
measures of connectivity. The nature of nodes and edges largely determines the
neurobiological interpretation of network topology [4, 5].

Streamline tractography is typically used to characterize structural connec-
tivity between two regions (nodes) in the brain. Here we propose that streamlines
can be used to construct the nodes as well. Currently there is no agreed-upon
method for constructing brain connectivity graphs out of a large number of
white matter tracts. In this paper, we present an efficient, scalable and auto-
mated framework for building and analyzing ε-radial anatomical connectivity
matrices (ε-acms) in a normalized space. Automatically identifying nodes using
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tract data has several advantages: (1) Cross-modality registration, which can
have limitations when acquisition parameters vary, can be avoided. (2) Large
scale studies become feasible with automated methods.

By using state-of-the-art spatial normalization ([6]) and tractography tools
([7]) the ε-acms show promising discriminative power in the context of classi-
fying autism. The source code in MATLAB implementation is available on an
accompanying website1.

2 Related Work

Improved methods for mapping anatomical connectivity is an important step in
exploring causal relationships in functional correlations [8, 9]. Fonteijn et. al. [10]
attempt at providing anatomical basis for functional networks but they point out
the problem of normalization of tracts and that there is no agreed-upon way of
transferring anatomical landmarks into subject space without affecting tractog-
raphy. Gong et. al. [11] applied DTI to map a network of anatomical connections
between 78 cortical regions. Hagmann et. al. [12] constructed a connection ma-
trix from fiber densities measured between homogeneously distributed and equal-
sized regions of interest (ROIs) numbering between 500 and 4000. They identify
ROIs by a heuristical two-phase “region growing” of voxels in the white/grey
matter boundary. They show results on only two human subjects where they
find that their individual brain networks have an exponential node degree dis-
tribution and that their global organization is in the form of a small world.
Skudlarski et. al. [9] present an approach in which they use tractography to first
estimate the strength of anatomical connection for any two white matter voxels
and then using the neighboring white matter voxels they extend the connectivity
information between pairs of grey matter voxels by using the information from
neighboring white matter voxels. They perform tractography in the native space
and use only up to 40000 tracts on average per subject. Further they use B0
images for non-linear registration for performing statistical analyses which does
not guarantee that the underlying fiber architecture (defined by FA or λ1) is in
register [13].

In addition to using state-of-the-art tensor based normalization scheme, our
framework is scalable up to a million tracts and we perform graph based classifi-
cation on a dataset of 31 subjects. Fig. 1 shows the overview of the construction
and analyses of ε-radial anatomical connectivity matrices (ε-acms). The next sec-
tion describes the details of our ε-radial node and edge construction algorithms
followed by experimental results and conclusions.

3 ε-radial anatomical connectivity

In this section we describe how to construct an anatomical connectivity matrix
using streamlines without parcellations of the grey or white matter. The method
uses the end points of the tracts to define the nodes by clustering neighboring

1 http://brainimaging.waisman.wisc.edu/∼adluru/ERG/eacm.htm



Fig. 1. (a) The input tensor volumes are used to generate a population specific atlas
using DTI-TK. Tractography is performed on the atlas volume. (b) The individual
subjects are transformed into the normalized space. (c) Tractography is performed on
the individual volumes in the normalized space. (d) ε-radial nodes are constructed using
Alg. 1. (e) ε-acms are constructed using Alg. 2, which can be used for classification and
other statistical analyses.

tract end points into a set of spheres of ε radius. These spheres form the nodes for
constructing a connectivity matrix. We call the resulting connectivity as ε-radial
connectivity. Using tract endpoint clusters as nodes allows to focus on regions
where there is structural connectivity. The nodes although sphere shaped can be
useful in localizing important regions of the brain. These ε-radial nodes are typi-
cally near the grey matter/white matter interface (useful to study connectivities
between functional areas [12]) where the FA drops below 0.15, the tractography
stopping criterion. The lower the stopping threshold, the more nodes will be in
grey matter.

The following two algorithms describe how to identify the ε-radial nodes
(N ) and edges efficiently. We would like to note that the connectivity matrices
are currently built using the presence of end points in these spheres but can be
extended to “passing through/way point” connectivity. Sample tracts connecting
two different pairs of nodes, a set of ε-radial nodes and sample ε-radial anatomical
connectivity are shown in Fig. 2.

Time complexity: If there are n tracts, the construction of kd-tree and
ε-radial nodes takes O(n log2 n). The construction of the ε-acm (with N nodes)
takes O(N log2 N+n log2 N) time. Most connectivity matrix algorithms estimate
connectivity between nodes pairwise and are not scalable in the number of nodes
and tracts as O(nN2) >> O(N log2 N + n log2 N). The proposed algorithm can



Algorithm 1 Construction of ε-radial nodes (N )
1: Input: Set of n tracts in population specific atlas
2: N ← Φ (empty set)
3: Build a kd-tree (KP) on the end points, P = {pi}2n

i=1 of the tracts
4: repeat
5: Pick an element pk ∈ P
6: N ← N ∪ {pk}
7: P ← P − {pj} (set minus), where {pj} in ε-radius of pk using KP
8: until P = Φ
9: Output: N

Algorithm 2 Construction of ε-radial anatomical connectivity matrix (ε-acm)
1: Input: Set of tracts, {ti}ni=1 of the input volume in the normalized space and N
2: Build a kd-tree (KN ) on the ε-radial nodes, N
3: Initialize the square matrix ε-acm[N ][N ] to zeros, where N = |N |
4: for i = 1 to n do
5: n1 ← node indices in ε radius of the first end point of ti using KN
6: n2 ← node indices in ε radius of the second end point of ti using KN
7: n1 ← n1 − n2 (set minus)
8: ε-acm[n1, n2]← ε-acm[n1, n2] + 1
9: end for

10: ε-acm← ε-acm + ε-acmT (transpose)
11: Output: ε-acm

scale up to a million tracts very easily as the connectivity matrix is populated
in one pass through the tracts. Connectivity matrices using about 200000 tracts
take less than a minute on a typical machine and in MATLAB implementation.

Different resolutions of ε produce different sets of nodes and connectivity
matrices. Sample ε-acms for a subject at different resolutions can be seen in Fig
3. As ε → 0, N → 2n where each tract end point becomes an ε-radial node
and the connectivity matrix becomes very sparse and has unit entries. Using
very large sparse connectivity matrices for any reasonable statistical analysis
is very hard with the small sizes of datasets used in various studies. For the
experiments presented we chose ε = 8mm, which produced 58 nodes. We used
ε = 8mm following the heuristics of Fonteijn et. al. [10], where they state ”In
most of the original studies [15-19,22], the ROIs that were used for effective
connectivity analysis were all spheres of 8mm radius.” in Sec. 2.3.

Alg. 1 is dependent on the order of points pk ∈ P. Our initial experiments
suggest that although there is slight variance in spatial locations of the nodes,
some global properties like histograms of node-degrees and edge-weights are
stable. There seem to be some interesting connections between ε-acms and ap-
proximate neighborhood graphs used in simplical complexes ([14]) which need
further exploration. Simplical complexes extract topological representations un-
derlying point cloud data. In our case the tract end points form the point cloud
data.



(a) (b) (c)

Fig. 2. Tracts whose end points are within the ε-radial spheres characterize the edges.
(a) Tracts between two pairs of nodes are shown in different color. Size of the nodes is
proportional to the degree of the nodes. (b) ε-radial node locations (red) on the template
volume with the tracts that are responsible in identifying them. The nodes and tracts
are overlaid on white matter (yellow) and grey matter (green). (c) Connectivities of
the ε-radial nodes are shown using edges. The thickness of an edge is proportional to
the number of tracts connecting two nodes.

4 Experimental results

Pre-processing and spatial normalization: DTI data from 31 subjects were
used: 17 subjects with autism spectrum disorders (ASD) and 14 control subjects
matched for age, handedness, IQ, and head size. The diffusion weighted images
were acquired in 12 non-collinear diffusion encoding directions with diffusion
weighting factor of b = 1000s/mm2 in addition to a single (b = 0) reference
image. Eddy current related distortion and head motion of each data set were
corrected using AIR [15] and distortions from field inhomogeneities were cor-
rected using field maps. The tensor elements were calculated using non-linear
estimation using CAMINO [7].

Spatial normalization of diffusion tensor images plays a key role in construct-
ing brain network graphs with identical nodes in the template. The quality of
spatial normalization determines the extent to which white matter tracts are
aligned. It has direct impact on the successful removal of shape confounds and
consequently on the validity, specificity, and sensitivity of the subsequent sta-
tistical inferences of group differences. State-of-the-art diffusion tensor image
registration DTI-TK [6] was used for spatial normalization of the subjects. Ten-
sor volumes, with axial dimension equal to a power of 2, are better suited for
registration algorithms that require the construction of standard multi-resolution
image pyramids. Hence the tensor volumes were resampled to a voxel space of
128 × 128 × 64 with voxel dimensions equal to 1.5mm × 1.75mm × 2.25mm.
Streamline tractography based on TENsor Deflection (TEND, implemented in
CAMINO [7]) was then used to generate the fiber tracts in the individual sub-
jects transformed to the normalized space. The summary of the pre-processing
can also be seen in Fig. 1.
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Fig. 3. ε-anatomical connectivity matrices (acms) of a sample subject at different reso-
lutions of ε. (a) ε = 5mm, N = 173 (b) ε = 8mm, N = 58 (c) ε = 10mm, N = 31. As ε
decreases the number of nodes increases and the connectivity matrix becomes sparser.
The ε-acms are normalized as ε-acm← ε-acm−min(ε-acm)

max(ε-acm)−min(ε-acm)
. The bright lines separate

the hemispheric connectivities.

Support vector classification: The ε-radial nodes were identified in the
population specific template as described in Alg. 1. Then for each of the in-
dividual subjects in the normalized space, ε-radial anatomical connectivity is
obtained using Alg. 2. We filtered out tracts having fewer than 50 points to
avoid the influence of spurious tracts. On average there were about 92000 tracts
in each subject and the average longest tract had about 1500 points. On average
the graph construction per subject takes about 18 seconds including file I/O on a
64-bit machine and using MATLAB implementation. Based on our survey of the
existing tools for connectivity construction ours is the fastest automatic method.
We explored two feature vectors viz. degree of nodes and weights of edges, for
the classification experiments. Degree of nodes is simply calculated by summing
up the rows or columns of adjacency matrices. The node-degree feature vector is
N long while the edge-weight feature vector is N(N−1)

2 long. We use the popular
support vector machines [16] with radial basis kernel as a classifier.

Since we have only 31 examples we evaluate our classifier performance using
leave-one-out cross-validation scheme. For each fold we perform feature selec-
tion using simple t-tests (only on training data) and keep features that have
p-values below a certain threshold. When using edge weight distributions as
feature vectors, the average accuracy over 31 folds is 87% with 84% specificity
and 94% sensitivity. When using degree of nodes the results are 84% accuracy,
83% specificity and 88% sensitivity. The classifier output values and the corre-
sponding receiver operating characteristic (ROC) curves are shown in Fig. 42.
The average areas under curve (AUC) for the two features are 0.912 and 0.811
respectively.

Although edge weight distribution has higher cross-validation accuracy, there
are more samples that fall inside the margin which could imply that degree

2 One of the TD samples (subject 11 of the 14) in (c) although correctly classified, is
not shown because the corresponding output made the figure out of scale.



of nodes is more generalizable feature. Increased discriminative power of edge-
weights could be attributed to the “pair-wise” interactions while increased gener-
alizability of node-degrees to lower dimensionality of the feature vector. Further
exploration on sensitivity to ε, different feature extractions (e.g. hemispheric
connectivities) and combinations (e.g. multi-kernel setting) is part of our future
work.

(a) (b) (c)

Fig. 4. (a) ROC curve shows for the two features. Edge weight distribution (blue)
performs better than degree of nodes (red). (b,c) Classifier output values for the two
classes. The thick line is the classification boundary and the dotted lines are the mar-
gins. Values above the thick line are classified as controls and those below as individuals
with ASD. Blue circles represent Typically Developing (TD) individuals and the red
triangles represent individuals diagnosed with Autism Spectrum Disorder (ASD). Edge
weight distribution (b) has more examples in the margin compared to that using node
degrees (c).

5 Discussion and conclusions
In this paper we proposed an automated and efficient way to build and analyze
anatomical connectivities of brains. Our method of connectivity matrix construc-
tion could be applied to cases where the nodes are manually identified as well.
The ε-radial connectivity method revealed significant group differences between
ASD and controls and is consistent with current hypotheses of abnormal brain
connectivity in autism [3, 17, 18]. Ideally, connectome maps acquired through the
use of diffusion imaging should be cross-validated with anatomical data collected
by histological techniques.
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