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Abstract. “Is the brain ’wiring’ different between groups of popula-
tions?” is an increasingly important question with advances in diffu-
sion MRI and abundance of network analytic tools. Recently, automatic,
data-driven and computationally efficient framework for extracting brain
networks using tractography and epsilon neighborhoods were proposed
in the diffusion tensor imaging (DTI) literature [1]. In this paper we pro-
pose new extensions to that framework and show potential applications
of such epsilon radial networks (ERN) in performing various types of neu-
roimage analyses. These extensions allow us to use ERNs not only to mine
for topo-physical properties of the structural brain networks but also to
perform classical region-of-interest (ROI) analyses in a very efficient way.
Thus we demonstrate the use of ERNs as a novel image processing lens
for statistical and machine learning based analyses. We demonstrate its
application in an autism study for identifying topological and quantita-
tive group differences, as well as performing classification. Finally, these
views are not restricted to ERNs but can be effective for population studies
using any computationally efficient network-extraction procedures.

Keywords: DTI, brain connectivity, tractography, brain networks, net-
work measures, classification, toplogical group differences, autism.

1 Introduction

Population studies on brain connectivity networks are commonly performed us-
ing resting state functional magnetic resonance imaging (fMRI). These networks
are called default mode networks (DMNs) and represent functional correlations be-
tween regions of the brain under rest [2]. These networks may not directly reflect
the underlying structural organization of the brain white matter (WM). Diffusion
tensor imaging (DTI) is a modality of MR imaging that is an exquisitely sensi-
tive, non-invasive method to map and characterize the microstructural properties
and macroscopic organization of the WM [3]. Streamline tractography methods
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on DTI data, albeit with limitations, are very useful for mapping major con-
nections in the brain faithfully [4]. They have been used to develop in vivo
dissection atlases [5] and build whole structural brain networks (e.g., Fig 1. of
[6]). T1-weighted images are typically used for obtaining node regions for these
networks. For example in [6], the cortex was parcellated into various regions
using FreeSurfer1 on a T1-weighted image. The main challenge in population
studies using such brain networks is a DTI-T1 image co-registration since the
problem of DTI to T1 co-registration is ill-posed and quite challenging: although
there is contrast between white and grey matter in the T1-weighted images the
contrast within white matter is not specific enough. More discussion on this can
be found in Fig. 1 of the supplementary material2. This inter-modality image
registration step forms a non-trivial hindrance for scalable studies of structural
brain connectivity networks in population studies. Without a detailed evalua-
tion study of such inter-modality registrations the connectivity analyses can be
intricately confounded. Hence one of the key challenges in studying brain con-
nectivity patterns in neuro-pathologies using DTI, short of the limitations of
DTI, is efficient and unbiased designation of nodes and edges in the brain.

Recently a scalable framework that avoids the inter-modality registration has
been proposed where, relying on well-validated tensor-based normalization meth-
ods, nodes are identified on the average DTI of a population using ε neighbor-
hoods of end points of tracts obtained on the whole brain [1]. Some of the
methods used kd-tree based search algorithms to identify the ε-radial nodes [7]
while the others used a sequential elimination of tracts [1]. Except for the bias
introduced from tractography, which is present in all streamline based meth-
ods, such a node generation does not introduce any bias from the ill-posed
image registration processes. These methods are also computationally efficient:
they can identify nodes and edges in a few seconds on a typical modern day
computer [7].

The key extensions presented in this paper are: (1) We generate the nodes by
first ordering the tracts by their length. Since the ε-neighborhood approaches
depend on the sequence of tracts this is an important change as this removes
the bias due to ordering of the tracts. (2) We enhance the edge properties by
using geodesic information of the tracts and not just the count of the tracts.
Such enhancements can result in increased sensitivity for statistical analyses.
(3) Using the enhanced edge matrices we perform novel physio-topological as
well as tract specific quantitative ROI analyses both in the setting of classical
voxel based analyses (VBA) as well as classification.

2 Epsilon Radial Networks

Brain networks (BNs) are modeled similar to other network models that is as a
collection of vertices (V) and edges (E). That is BN = {V, E}. Tabel 1 summarizes

1 http://surfer.nmr.mgh.harvard.edu
2 http://brainimaging.waisman.wisc.edu/~adluru/ERN/supplementary.pdf
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different modeling of the vertices and edges for contrasting with the epsilon ra-
dial networks (ERNs). In the default mode networks (DMNs) using resting fMRI,
the vertices (node regions) are a function of blood oxygen level (BOLD) acti-
vations and the edges are based on temporal correlations between them. In the
anatomical parcellation networks (APNs), the node regions are based on anatom-
ical parcellation/segmentation [6]. In contrast, the nodes in ERNs are identified
based on tracts themselves. This allows for identification of vertices (node re-
gions) that have potential structural connectivity. Thus ERNs are completely DTI
data-driven.

Table 1. Different models of brain networks

DMNs APNs ERNs

V f(BOLD activations) f(segmentation ± registration) f(tractography)

E f(temporal correlations) f(tractography) f(tractography)

The ERNs are undirected and weighted networks and are constructed by adapt-
ing the framework and algorithms introduced in [7]. Briefly, the method uses the
end points of the tracts to define the nodes by clustering neighboring tract end
points into a set of spheres of ε radius which form the nodes for constructing
connectivity matrices. Let Tij denote the set of tracts connecting two vertices
i, j ∈ V. The original proposal defined E = {|Tij |}i,j∈V. We propose that in ad-
dition to using tract counts as the edge strength, using the quantitative and
physical properties using the geodesic pathway information of the tracts can
enhance the ERNs.

That is we define E = {|Tij |, quant(Tij), physical(Tij)}i,j∈V. These enhanced
ERNs can be more sensitive to group differences in population studies. In this
paper we store the average fractional anisotropy (FA), mean diffusivity (MD)
and axial diffusivity (AD) along tracts and the geodesic lengths of the tracts.
Other diffusion based measures like radial diffusivity (RD), skewness, planarity,
linearity and sphericalness may also be stored. In typical voxel based analyses
an FWHM of 8mm smoothing is used to compensate for errors in spatial normal-
ization. Hence we use an ε = 4 to match the smoothing amount. The ERN nodes
on the average template are shown in Fig. 1. As can be seen, the nodes have a
good coverage of the brain regions and are generally in the grey/white matter
boundaries as discussed in [7].

2.1 Properties of the ERNs

The nodes and edges of ERNs provide two fold advantages: (1) Provide an efficient
way to extract various quantitative measures such as average FA, MD along the
WM tracts and node regions. This is possible by extracting ROI masks using V
and {Tij}i,j∈V. (2) Provide an efficient way to extract various topological prop-
erties of WM organization such as Rentian scaling, characteristic path length
and clustering coefficient which are described next.
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Fig. 1. The ε-radial nodes on the average DTI template are shown in random colors

(1) Rentian scaling: Imagine we can partition the vertices (V) of an ERN into
n or physical partitions (e.g. cubes in a brain volume). Then it is likely that the
following power law [8] holds for most of those partitions:

E = kN r (1)

where E is the number of connections crossing a partition and N is the number
of nodes in that partition. k is called the Rent coefficient and 0 ≤ r ≤ 1, the
Rent exponent. When k = 1 and r is estimated using all the partitions from the
log− log relationships as:

log(E) = r log(N ) (2)

the estimated r is called Rentian scaling. If it is statistically significant for a given
distribution of E and N , that is the connections only scale linearly in the log− log
space, the network is considered efficient in terms of ”wiring cost” and physical
embedding. Such features have been studied in the context of neuroimaging
[9,10]. Following [8] the brain volume is partitioned into n = 5000 cubes in our
experiments.

(2) Characteristic path length: The characteristic path length (CPL) of a
network is defined as the average shortest path (SP) between all pairs of N
vertices [11]:

CPL =

∑
(i,j) SP(i, j)

N(N − 1)
(3)

It roughly indicates the efficiency of connectivity between regions in the network.
The smaller the path length the more efficient the reachability is in a network. We
would like to note the difference between this efficiency and the rentian scaling:
the rentian scaling tries to characterize the efficiency in terms of resources needed
to build the network while the characteristic path length tries to characterize
the efficiency of the network in terms of connectivity/reachability and reflects
“small worldness” of a network [11].

(3) Clustering coefficient: The clustering coefficient of a node (ν ∈ V) in a
network is defined as the proportion of connections that it has to the rest of the
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network, i.e. the ratio of the number of edges connecting the node to the total
number of possible edges that can connect the node [11]:

CCν =
|Eν |

N(N − 1)/2
(4)

where Eν = {eνi}i∈V\ν and eνi is the edge strength for e.g. in ERNs it would
be |Tνi|. The clustering coefficient of an ERN is defined as the average clustering
coefficient of a node in that network, i.e. CCERN = (

∑
ν∈V CCν)/N . The CC indi-

cates the redundancy of connections in a network. Thus higher CC reflects the
robustness of connectivity in a network. This is because the network can afford
to lose some edges without losing connectivity to regions.

(4) Node-Strength: The strength of a node is a generalization of the degree of
a node for weighted networks. It is defined as the sum of the weights of all edges
connecting a node, i.e. Sν =

∑
i∈V\ν eνi. The strength of a network can be defined

as the average strength of all nodes in that network, i.e. SERN = (
∑

ν∈V Sν)/N .
Thus ERNs are very useful in extracting different “views” of the DTI data for

better sensitivity in neuroimage analyses. We use the implementations available
in [12] to extract these measures on the ERNs.

3 ERN Analyses in Autism

In this section we present various statistical analyses performed using different
properties and measures extracted from ERNs. The details of the data and pre-
processing can be found in the supplementary material 2. First we look into
three types of group differences: (1) Differences between average properties of the
individual ERNs of the two groups. (2) Differences between the properties of the
average ERNs of the two groups. (3) Differences between quantitative measures
of the tissue extracted using individual ERNs, which involves quant(Ti,j). (4)
Then using various features of the ERNs we perform classification using support
vector machines [13]. (5) Finally we examine abnormal long vs. short range
and hemispheric connectivity hypotheses in autism [14,15], which involves using
physical(Ti,j).

(1) Differences between individual ERNs: The distribution of subjects in the
two groups according to CCERN, CPLERN, SERN and Rentian scaling are shown in Fig.
2. We can observe that there are no statistically significant differences between
the two groups. This can be expected since the two groups are matched for age,
IQ and handedness3. This also shows that our ’network-extraction process’ does
not introduce any bias into identifying group differences.

(2) Differences between the average ERNs: Let V denote the ε-radial nodes
on the template and Ei

ERN denote the edges of ERN of subject i. Then ASDERN =
{V, avg(Ei

ERN)i∈ASD} denotes the average ERN for the ASD group and TDCERN can be

3 Please see Fig. 2 of the supplementary material2 for the matching information.
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(a) (b)

(c) (d)

Fig. 2. The distribution of subjects in two groups according to different properties of
their corresponding ERNs. (a) Average clustering coefficient, (b) Characteristic path
length, (c) Average node-strength, (d) Rentian scaling. We can see that there is no
statistically significant difference between the two groups in this sample-set using ERNs.

Fig. 3. Group differences using properties of the average ERNs. (a) Cumulative distribu-
tion function (CDF) of the nodes vs. clustering coefficient, (b) CDF of nodes vs. their
strength. The significances of the differences are computed using Kolmogorov-Smirnov
tests. (c) Rentian scaling with the corresponding log− log distribution of nodes in the
partitions and their connections.

similarly defined. Fig. 3 shows the differences between the distributions of clus-
tering coefficients of nodes, strengths of nodes and rentian scalings of ASDERN and
TDCERN. Since the distributions (showed in insets) are skewed we use Kolmogorov-
Smirnov test [16], instead of two-sample t tests, to compare the significance of
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Fig. 4. Group differences using average quantitative measures (left - FA, right - MD)
of the tissue masks obtained from V and {Tij}i,j∈V in the individual ERNs. Top row:
Significant edges. The nodes in the left and right hemispheres are colored red and blue
respectively. Bottom row: Significant nodes. The size of the edges and nodes are
proportional to the − log(p) values.

the differences between their corresponding cumulative distribution functions
(CDFs). We can observe that there is decreased clustering coefficients and node
strength in the ASD relative to the TDC. These two suggest under-connectivity
of white matter in autism. There is no significant difference in the rentian scaling
of the two average networks. This can also be expected as we do not expect a
huge difference between the “wiring costs” of the brains of high-functioning ASD
and TDC.

(3) Differences between quantitative measures: Here we perform classical
ROI analyses using the masks obtained from V on the template and {Tij}i,j∈V
in the individual ERNs. The group differences using average FA and average MD
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Fig. 5. Classification performance metrics as a function of the ADOS cut off used for
the inclusion of ASD subjects. The ACC and AUROC are stable and peak at a cut off of
14. The other metrics show increase and saturate around 14. The right figure shows
the change in the ASD sample size as the cut off increases.

(a) (b)

(c) (d)

Fig. 6. Different kernels (features) and their effect on the SVM classification perfor-
mance metrics. The highlighted red boxes show intra-class similarities for ASD (top-
left) and TDC (bottom-right). In an ideal situation the similarities within the boxes
should be higher than the similarities outside the boxes. The improvement in classifi-
cation metrics due to addition ERN features is shown in (d).
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(a) (b)

(c) (d)

Fig. 7. (a) Distribution of subjects according to ADOS. (b) Distribution of subjects
according to SVM output. In an ideal situation it should be as similar to (a) as possible.
(c) SVM output for different subjects. The misclassified ones are encircled in green.
(d) The ROC curve for the leave-one-out cross-validation.

in those masks are shown in Fig. 4. These differences can be attributed purely
to the tissue property differences and are not confounded by network extraction
procedure as shown by the failure to reject null-hypotheses using individual
ERNs (Fig. 2). Thus using ERNs one can look into tissue differences by holding
the topological properties constant when possible.

(4) Classification: Classification is a very challenging problem in autism studies
especially using DTI. General leave-one-out cross-validation accuracies reported
are in the high 70% to 80% [17,7,18]. An accuracy of 90% on an independently
chosen test sample was reported in [19]. In this paper we report the performance
of SVM classification using features extracted from ERNs (ERN1 and ERN2) as well
as basic voxel based features of the WM (VBM).

– ERN1: Average FA, MD, AD on the node-regions in V.
– ERN2: FA, MD, AD at all the voxels in the mask obtained from all the node-

regions in V.
– VBM: FA, MD, AD at all the voxels in the white matter mask on the template.
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(a) (b)

(c) (d)

Fig. 8. Top row: Differences between long vs. short range connectivities using geodesic
(a) as well as euclidean (b) distances between nodes. The empirical CDFs and the dis-
tributions of the edges (connections) are shown as insets. Although the differences are
statistically not very significant ((a): p = 0.0941, (b): p = 0.8723), the encircled regions
indicate support for the increased short-range and decreased long-range connectivities
in ASD. Bottom row: Differences between intra and inter hemispheric connectivities
between average ERNs of ASD and TDC. (c) Although the difference is not statistically
significant (p = 0.2443), the encircled regions indicate support for the increased intra-
hemispheric connectitvity for small and strong connections. (d) The inter-hemispheric
connectivity is consistently lower for the ASD group (p = 0.0624) and is consistent
with the finding in functional connecitvity [15].

For each of the above set of features we use both linear and radial-basis kernels
for SVM classification. To measure the discriminative capacity of the features,
we report classification performance metrics in the leave-one-out cross-validation
setting, for different bootstraps of the data. The different metrics are accuracy
(ACC), specificity (SPEC), sensitivity (SENS) and area under receiver operating
characteristic (ROC) curve (AUROC). For the various bootstraps, we include all
the TDC subjects with ADOS < 1 and include ASD subjects for different lower
thresholds of ADOS as shown in Fig. 5. As the lower threshold of the ADOS
increases the classification task becomes easier as the goal becomes separating
extreme cases of ASD from TDC. Figs. 6 and 7 show the classification outputs
for a particular bootstrap with TDC (n = 15) and ASD (n = 11) with ADOS >
14 where the ACC and AUROC reach a maximum as shown in Fig. 5. Fig. 6 shows
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the sum of the kernels for VBM, ERN1 and ERN2 as well as the the improvement
in classification metrics by the addition of ERN based features.

(5) Differences in long vs. short range and hemispheric connectivi-
ties: Such differences are one of the important hypotheses investigated in ASD.
Indirect ways of characterizing these connectivities were proposed in the liter-
ature, e.g. using cortical thickness [20,21] and white matter volumes [14]. ERNs
can provide a more direct way by looking at both the connectivities based on
geodesic as well as euclidean distances between the node regions. Figs. 8 (a,b)
show the group differences between these connectivities on ASDERG and TDCERG. It
has been indicated that ASD group has decreased inter-hemispheric functional
connectivity [15]. ERNs can also be effectively used to investigate hemispheric
structural connectivity differences, both intra and inter. Group differences be-
tween intra and inter hemispheric connectivities by plotting the distribution
of the edges (connections) across different edge strengths are shown in Figs. 8
(c,d). We can observe decreased inter-hemispheric connectivity and increased
intra-hemispheric connectivity in the ASD group. We would like to note that
intra and inter hemispheric connections can also be thought of as a proxy to the
short and long range connections respectively. To be sensitive to the changes,
the same “easy” bootstrap sample (i.e. ADOS > 14 for ASD and ADOS < 1 for
TDC) that was used for classification was also used for these two analyses.

4 Discussion

In this paper we extend recently proposed automatic, data-driven network ex-
traction frameworks. These enhanced networks could potentially be more sen-
sitive for network based analyses in population based neuroimaging studies.
Such methods in addition to avoiding the bias of ill-posed inter-modality im-
age registration (Fig. 1 of the supplementary material2) are computationally
very efficient. However there are several limitations to be considered: (1) Trac-
tography in the spatially normalized tensors needs to be validated against the
tractography in the tensors native/acquired space. This is part of our on-going
work. (2) The ε-radial nodes although cover important regions in the grey/white
matter boundary, do not cover all possible regions of interest and can lead to
false-negatives in group differences. Investigating potential extensions using tech-
niques like Vietoris-Rips complex [22] are part of our future work. (3) The spatial
normalization needed here may constrain the white matter topology to be too
similar between subjects. The normalization causes the brain anatomy to have
more consistent shape and size in the normalized space than they would in the
native/acquired space. Hence, although the quantitative measures like FA, MD
along the edges and node-regions might be preserved, this method may lose some
sensitivity to individual differences of topology. Performing topological group dif-
ferences without needing spatial normalization is also potentially an interesting
line of work.
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