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Abstract

Autism is a neurodevelopmental disorder affecting behavioral and social cognition but there is little

understanding about the link between the functional deficitand its underlying neuroanatomy. We

applied a 2D version of voxel-based morphometry in differentiating the white matter concentration

of the corpus callosum for the group of 16 high functioning autistic and 12 normal subjects. Using

the white matter density as an index for neural connectivity, autism is shown to exhibit less white

matter concentration in the region of the splenium removingthe effect of age based on the general

linear model framework. Further it is shown that the smallercorpus callosum size in autism is due

to hypoplasia rather than atrophy.
∗Corresponding Author. Email: mchung@stat.wisc.edu Web page:http://www.stat.wisc.edu/∼mchung
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1 Introduction

Autism is a neurodevelopmental disorder of brain function that has begun to attractin vivo struc-

tural magnetic resonance imaging (MRI) studies in the regionof the corpus callosum (Pivenet

al., 1996, 1997; Egaaset al. 1995, Hardanet al., 2000; Maneset al., 1999). There is little un-

derstanding about the link between the functional deficit and the underlying abnormal anatomy

in autism, which provides motivation for our study. These studies use the Witelson partition or a

similar partition scheme of the corpus callosum (Witelson,1989). Witelson partitioned the mid-

sagittal cross-sectional images of the corpus callosum along the maximum anterior-posterior line

(Talairach and Tournoux, 1988) and defined the region of the genu, rostrum, midbodies, isthmus

and splenium from the anterior to posterior direction. Basedon the Witelson partition, there has

been a consistent finding in abnormal reduction in anterior,midbody and posterior of the corpus

callosum (Brambillaet al., 2003).

Pivenet al. (1997) compared 35 autistic individuals with 36 normal control subjects controlling

for total brain volume, gender and IQ and detected a statistically significant smaller midbody and

posterior regions of the corpus callosum in the autistic group. Maneset al. (1999) compared 27

low functioning autistic individuals with 17 normal controls adjusting for the total brain volume.

They found a smaller corpus callosum compared to the controlgroup in genu, rostrum, anterior

midbody, posterior midbody and isthmus but did not find statistically significant differences in the

rostrum and the splenium although the sample mean of the rostrum and splenium size are smaller

than that of the control group. Hardanet al. (2000) compared 22 high functioning autistic to 22

individually matched control subjects and showed smaller genu and rostrum of the corpus callosum

adjusting for the total brain volume based on the Witelson partition. The smaller corpus callosum

size was considered as an indication of a decrease in interhemispheric connectivity. They did

not detect other regions of significant size difference. Foran extensive review of structural MRI

studies for autism that have been published between 1966 and2003, one may refer to Brambillaet

al. (2003).

The shortcoming of the Witelson partition is the artificial partitioning. The Witelson partition

may dilute the power of detection if the anatomical difference occurs near the partition boundary.

Alternative voxel-wise approaches that avoid predefined regions of interests (ROI) have begun

to be used in structural autism studies. Vidalet al. (2003) used the tensor-based morphometry

(TBM) to show reduced callosal thickness in the genu, midbodyand splenium in autistic children.

Abell et al. (1999) used voxel-based morphometry (VBM) (Wrightet al., 1995; Ashburner and
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Figure 1: Left: white matter segmentation of an individual midsagittal MRI from SPM’99. Middle:
2D Gaussian kernel smoothing of the white matter segmentation with 12mm FWHM. Right: the
sample mean of the smoothed white matter density for controlgroups.

Friston, 2000, 2001; Goodet al., 2001) in high functioning autism to show decreased gray matter

volume in the right paracingulate sulcus, the left occipito-temporal cortex and increased amygdala

and periamygdaloid cortex. The advantage of the VBM framework over the Witelson partition

approach is that it is completely automated and does not require artificial partitioning of the corpus

callosum that introduces undesirable bias. Further it is not restricted toa priori ROIs enabling

us to perform the statistical analysis at each voxel level and to pinpoint the exact location of the

anatomical differences. Let us review the basis of VBM and itsconnection to ROI morphometry.

2 Methods

Voxel-based morphometry

VBM as implemented in SPM’99 computer package (Wellcome Department of Cognitive Neurol-

ogy, London, UK, http://www.fil.ion.ucl.ac.uk/spm) starts with normalizing each structural MRI

to the standard SPM template and segmenting it into white andgray matter and cerebrospinal

fluid based on a Gaussian mixture model (Ashburner and Friston, 1997, 2000). Based on a prior

probability of each voxel being the specific tissue type, a Bayesian approach is used to get a bet-

ter estimate of the posterior probability. This Bayesian update of the probability is iterated many

times until the probability converges. This probability isusually referred to asdensity. Note that
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this is not physical density so it should be interpreted probabilistically. There has been on going

discussions on the amount of image registration and modulation by the determinant of the Jacobian

of deformation fields in VBM (Bookstein, 2001; Ashburner and Friston, 2001; Mehtaet al., 2003).

In our study, we applied the 2D version of VBM on the midsagittal cross section of 3D MRI

(Figure 1). Letp(x), x ∈ R
2 be the white matter density of the 2D midsagittal cross section of

corpus callosumΩ. Denote1Ω(x) = 1 if x ∈ Ω and0 otherwise. The shape ofΩ is random and

we associate it with probabilityp(x),

P (x ∈ Ω) = p(x).

Then the area of the corpus callosumΩ is given by

A(Ω) =

∫
1Ω(x) dx.

From this, by taking the expectation, we estimate the area ofcorpus callosum as

Â(Ω) = EA(Ω) =

∫
E1Ω(x) dx =

∫
p(x) dx. (1)

So the sum of the white matter density over all voxels gives anapproximation to the area of the

corpus callosum. In this context, ROI morphometry used in Piven et al. (1997), Hardanet al.

(2000) and Maneset al. (1999) can be viewed as a subset of VBM framework. For instanceROI

morphometry based on Witelson partition can be performed bysegmenting the normalized 2D

midsagittal images.

The white matter density is a probability ranging between 0 and 1 so it is not exactly normally

distributed. To make it more normal, one may apply thelogit transform

p →
1

2
ln

p

1 − p
.

However we did not perform the logit transform since we adapted the usual Gaussian kernel

smoothing with relatively large 12mm FWHM to make the white matter density more normal

(Figure 1). For detailed distributional assumptions, one may refer to Ashburner and Friston (2000)

and Salmondet al. (2002). LetKσ be a Gaussian kernel that follows bivariate normalN(0, σ2I).

Kernel smoothing of scalar functionp is defined as convolution
∫

Kσ ∗ p(x) dx =

∫ ∫
Kσ(x − y)p(y) dy dx =

∫
p(y) dy. (2)

From equation (1) and (2) it can be seen that the area estimate

Â(Ω) =

∫
Kσ ∗ p(x) dx
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Figure 2: The sample mean of the white matter density of the autistic group (left) and the control
group (middle) respectively. The third figure is the difference of the sample mean. We are inter-
ested in testing if this difference is statistically significant. Simply comparing the white matter
density difference, the autistic group shows less white matter concentration in the genu and the
splenium of the corpus callosum.

is invariant under scaleσ change. This can be used to estimate the corpus callosum areafrom

VBM white matter density maps. Assuming normality for kernelsmoothingKσ ∗ p, Â(Ω) would

be normal so the usual statistical tests based on normality can be applicable.

Two sample t-test

Let p1
a, · · · , pm

a (m = 16) be the white matter density for autism andp1
c , · · · , pn

c (n = 12) be the

white matter density for controls at a given voxel. We assumepi
a ∼ N(µa, σ

2
a) andpj

c ∼ N(µc, σ
2
c )

independently. We denote the sample mean and the variance ofpi
a andpj

c by p̄a, p̄c, S
2
a, S

2
c respec-

tively.

First we test if the autistic group has more white matter variability in the corpus callosum:

H0 : σ2
a = σ2

c vs. H1 : σ2
a ≥ σ2

c .

Under the null assumption, the ratio of the sample variancesS2
a/S

2
c has anF distribution with

m − 1 andn − 1 degrees of freedom. TheF -map is given in Figure 3 where the splenium of

the autistic group shows statistically significant larger variability. In this region, the autism shows

nine times more variability (p-value of0.0004). Now we test if the white matter density difference

between the autistic group and the control group is statistically significant (Figure 2):

H0 : µa = µc vs. H1 : µa ≤ µc, (3)
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Figure 3: The sample standard deviations of autism (left) and control (middle) respectively. The
last figure shows theF -map showing upto 9 times more variability of the white matter concentra-
tion in the splenium of the autistic group. The genu and the midbody also show larger white matter
concentration variability but they are not as predominant as the splenium.

The classical test statisticT for the Behrens-Fisher problem depends on the unknown nuisance

parameterσa andσc that are estimated by sample variances (Tsui and Weerahandi, 1989):

T =
d̄a − d̄c√

S2
a/m + S2

c /n
∼ td.f.

where the degrees of freedomd.f. of thet-distribution is estimated by

d.f. =
(S2

a/m + S2
c /n)2

(S2
a/m)2/(m − 1) + (S2

c /n)2/(n − 1)
.

However, since the degrees of freedomd.f. = m + n − 2 = 26 is relatively high in our study, we

may pool the variance and use the pooled two samplet-statistic

T =
d̄a − d̄c

Sp

√
1/m + 1/n

∼ tm+n−2,

where the pooled varianceS2
p = ((m − 1)S2

a + (n − 1)S2
c )/(m + n − 2). In fact we did not see

much difference betweent-statistic images in two cases so we will pool the variances for the two

samplet-test. The advantage of pooling the variance is that the statistical distribution becomes

exact. However care should have taken when pooling the variance since it can be shown to lead to

erroneous conclusions when it is applied when population variance are different for small sample

size. An alternate approach would be to use the concept ofgeneralized p-value which provides

exact probability statments in the presence of unisance parameters (Tsui and Weerahandi, 1989).
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Figure 4: Left: two samplet statistics. Middle:p-value map thresholded at0.1. Right: p-value
represented in logarithmic scale. The log scale is useful indisplayingp-value map. The splenium
and the genu of the corpus callosum show huge white matter deficiency in autism compared to
control.

In the place of a test statistic, they use so called generalzied test variable and the corresponding

p-value can be computed exactly. For multiple comparison that account for spatially correlated

errors, one may use the result of the random field theory (Worsley et. al., 1996), the false positive

rates approach (Geneveseet al., 2002; Benjamini and Hochberg, 1995) or random permutation

tests (Nichols and Homles, 2002) but we will not discuss it inthis paper.

General linear models

Since all subjects are different in age and IQ, there might beconfounding effects of age and IQ on

the white matter density. Previous anatomical studies in the corpus callosum suggest this (Bram-

billa et al., 2003). On the other hand, deformation-based morphometry and tensor-based mor-

phometry in the normal developmental studies in children show that there is relative brain tissue

growth in the corpus callosum over time (Chunget al., 2001; Thompsonet al., 2000). In particu-

lar, Chunget al. (2001) showed white matter local volume increase in the midbody, isthmus and

splenium of the corpus callosum in 28 normal subjects from 12to 16 years (Figure 5). In our study,

the age for the control group is17.1 ± 2.8 and for the autism group it is16.1 ± 4.5 years. The age

ranges for two groups are somewhat compatible; however, there might be still age effect on the

white matter difference. To evaluate any possible effect ofage on the white matter density, we first

fit linear models

density = λ1 + λ2 · age (4)
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Figure 5: Thet statistic maps of brain volume change for children. The Jacobian of the deformation
fields is computed and used as a metric for measuring local volume in Chunget al. (2001). Red
color indicates the brain tissue growth over time and blue color is atrophy. The midbody, isthmus
and splenium show white matter volume increase.

Figure 6: The simple linear fit correlating the white matter density to age at the genu (a), midbody
(b) and the splenium (c). Red color is the autism group and bluecolor is the control group. The
splenium seems to show obvious white matter deficiency in autism but group differences in the
genu and the midbody are unclear due to different associations with age in each group.
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Figure 7: Linear regression of the white matter density on age. Linear growth modeldensity =
λ1 + λ2 · age is fitted for each group separately.λ1 is the intercept andλ2 is the slope of the
regression line. The autistic group shows lower white matter density compared to the control at
lower age but gains white matter over time while the control group shows decreasing white matter
density with age. The control group shows2.5%/year decrease in white matter concentration
in the midbody while the autistic group shows2.5%/year increase of white matter in the genu.
F -test was performed for the fit of the linear model and it’sP -value is computed.
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to each group separately using the least-squares method at each voxel (Figure 6 and Figure 7).

The liner model fit shows the dynamic pattern of different white matter density changes over time

between groups. The pattern of growth in the corpus callosumseems different. The autistic group

shows lower white matter density compared to the control group at the lower age but gains white

matter over time while the control group shows decreasing white matter density with age. There

thus appears to be age differences for at least some regions of the corpus callosum and these should

be accounted for.

One approach for removing the age effect would be to modulatethe white matter density such

that the age effect will not be present. First we estimateλ1 andλ2 for each group via the least

squares method. Then adjust the white matter densityd(t) at timet via transform

d(t) → d(t) + λ̂2(t̄ − t),

whereλ̂2 is the least-squres estimation ofλ2 andt̄ is the mean age of both the controls and autistic

combined together. This has an effect of modulating the densities measured at different age to fixed

reference agēt. A more general approach would be to use a general linear model (GLM). The gen-

eral linear model (GLM) is a flexible framework that can be used in localizing the region of white

matter concentration that are related to covariates such asage, IQ, gender and handness. Statis-

tical frameworks such as the analysis of variance (ANOVA), the multivariate analysis of variance

(MANOVA), the analysis of covariance (ANCOVA) and the multivariate analysis of covariance

(MANCOVA) can be viewed as special cases of the GLM.

We consider the following GLM:

density = λ1 + λ2 · age + β1 · group + ǫ,

where the dummy variablegroup is 1 for autism and0 for control. In this formulation, we do not

have separate linear equations as before but combine autismand control group data together and

have a single linear equation. A similar linear model formulation in the VBM is used in localizing

the region of the gray matter maturation in children (Pauset al., 1999). To formulate the problem

in somewhat general fashion, letz = (z1, · · · , zk) to be nuisance variables such asage andIQ and

x = (x1, · · · , xp) to be the variable of interest such asgroup. Then we have GLM in the following

form

p = zλ + xβ + ǫ

whereλ = (λ1, · · · , λk)
′ andβ = (β1, · · · , βp)

′. We assume the usual mean zero Gaussian noise.
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Then we test

H0 : Ep = zλ vs. H1 : Ep = zλ + xβ. (5)

It is equivalent to testing

H0 : β = 0 vs. H1 : β 6= 0.

The fit of model is measured by the residual sum of squares or the sum of he squared errors (SSE):

SSE0 =
m+n∑

i=1

(pi − ziλ̂0)
2,

SSE1 =
m+n∑

i=1

(pi − ziλ̂1 − xiβ̂1)
2,

whereλ̂0, λ̂1, β̂1 are the least squares estimators of the parameters andzi andxi are data fori-th

subject. UnderH0,

F =
(SSE0 − SSE1)/p

SSE0/(m + n − p − k)
∼ Fp,m+n−p−k. (6)

The larger theF value, it is more unlikely to acceptH0. For our data, we are testing for group

difference controlling for age effect sok = 2 andp = 1.

Subjects and image acquisition

Gender and handedness affect the corpus callosum anatomy (Witelson, 1985; Witelson, 1989;

Luders, 2003) so all the 16 autistic and 12 control subjects used in this study are right-handed males

except one subject who is ambidextrous. Sixteen autistic subjects were recruited for this study from

a list of individuals with a diagnosis of high functioning autism in the Madison and Milwaukee

area maintained for research purposes by the Waisman centerat the University of Wisconsin-

Madison. Diagnoses were confirmed with the Autism Diagnostic Interview - Revised (ADI-R)

or clinical interview administered by a trained and certified psychologist at the Waisman center.

All participants met DSM-IV criteria for autism or Asperger’s pervasive developmental disorder.

Twelve healthy, typically developing males with no currentor past psychological diagnoses served

as a control group. The average age for control is17.1 ± 2.8 and autism is16.1 ± 4.5 which is in

compatible age range.

T1-weighted MRI scans were obtained with a 3 Tesla GE scanner (flip angle30◦, field of view

24cm,256 × 192 matrix size with 1.2mm slice thickness). MRIs were normalized and segmented
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Figure 8: Contour plots ofF -map showing the statistically significant white matter density differ-
ence controlling for age effect superimposed on top of the normalized mean of 12 control subjects.
Left: F -map is superimpose on top of the sample mean of the normalized images. Right:F -map is
superimposed on top of the sample mean of the normalized and smoothed images. It shows white
matter density difference occurs in the genu and the splenium.

as described in the previous section. Then the midsagittal cross sections of the white matter seg-

mented images showing the corpus callosum were extracted and smoothed with 12mm 2D Gaus-

sian kernel (Figure 1).

3 Results

First we fit the white matter density change over age via linear growth model (4). The white matter

increase of2.5% per year in the genu of the autistic group and decrease of2.5% per year in the

midbody of the control group are statistically significant (Figure 6 and 7). Since there is no age

effect in the splenium, the white matter difference in that region should be largely due to the group

difference while the white matter difference detected in the genu may be in fact due to a possible

age effect. So we refitted GLMs (5) as described in the previous section and computedF statistic

map. We found statistically significant white matter deficiency in the genu(P−value = 0.044) and

the splenium (P -value = 0.005, maximumF -value = 9.5). It is interesting to note that the splenium

is the region of high variability for the autistic group (Figure 3). In the splenium we found 9 times

more variable white matter density (p-value of0.0004).
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Figure 9: Null data is constructed by randomly selecting 8 from 16 autism and 6 from 12 controls
and combine them together to form a group consisting of 14 subjects. Combining the remaining
14 subjects formed the second group. Then two samplet tests are performed on these null data.
For 3 different random permutations, the statistical significance of white matter difference is much
lower than the real data indicating no image processing artifacts.

Comparing GLM results (Figure 8) with the two samplet-test results not taking account for the

age effect (Figure 4), we see similar aP -value map in both cases indicating the age effect in our

study is negligible due to the compatible age range between groups.

To check for possible image processing artifacts, we applied our statistical tests on null data

constructed from randomly selecting 8 from 16 autism and 6 from 12 controls and combining

them together to form a new group consisting of 14 subjects. Combining the remaining 14 subjects

formed the second new group. Afterwards, the same statistical tests were performed on the null

data revealing no significant result other than due to randomness. For instance the two sample

t-test is performed in null data and the resultingt-map shows insignificant results for three random

permutations (Figure 9). A similar approach of generating null data and checking possible image

processing artifacts has been proposed in Chunget al. (2003) for a child brain development study.

4 Discussion

The 2D version of the voxel-based morphometry was used in themidsagittal cross section of MRI

quantifying the white matter deficiency in high functioningautism. Accounting for an age effect,

statistically significant white matter deficiency in the genu and splenium of the corpus callosum

was detected in the autistic group but there is no significantdifference in the midbody. This may
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suggest impaired inter-hemispheric connectivity in frontal and particularly temporal and occipital

regions. It is interesting to note that Pivenet al. (1996) found increased volume of the parietal,

temporal and posterior lobes but not the frontal lobes in autism compared to normal control. The

deficit in splenium white matter may be associated with the abnormalities in face processing and

particularly in the identification of emotion in faces (Dalton et al., 2003). In normal subjects, faces

activate the right fusiform area and the verbal identification of the emotion in a face likely requires

transfer of information between the hemispheres in the splenium region. The deficit found here

in the autism group may at least in part underlie the abnormalities in emotional face processing

observed in this group (Dalton et al., 2003).

Linear growth models were fitted for autism and control groups separately to show different

pattern of white matter density change over time. Subjects with autism shows lower white matter

concentration at the lower age range in almost all part of thecorpus callosum but the white matter

density increases over age. On the other hand, the normal control group shows a higher concentra-

tion of the white matter at younger ages, but decreasing density particularly in the midbody with

increase in age. The smaller callosal size in the genu and splenium might be attributed to hypopla-

sia rather than atrophy. In particular we found a statistically significant2.5%/year increase of the

white matter in the genu for the autistic group.

A similar result was obtained using tensor-based morphometry where Vidalet al. (2003) com-

pared 15 autistic subjects of age9.9 ± 3.2 years to a group of 13 control subjects of age10 ± 2.1

years. They found the most significant reduction of the corpus callosum size in the genu, splenium

and midbody in decreasing order. The difference with our voxel-based morphometry result might

be due to the different morphometric techniques plus manualsegmentation used in Vidalet al.

(2003) while no manual segmentation of any sort was applied in our study.
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