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Abstract

Autism is a neurodevelopmental disorder affecting behralend social cognition but there is little
understanding about the link between the functional dediwit its underlying neuroanatomy. We
applied a 2D version of voxel-based morphometry in difféisgimg the white matter concentration
of the corpus callosum for the group of 16 high functioningstic and 12 normal subjects. Using
the white matter density as an index for neural connectiaiyism is shown to exhibit less white
matter concentration in the region of the splenium remotegeffect of age based on the general
linear model framework. Further it is shown that the smaitapus callosum size in autism is due
to hypoplasia rather than atrophy.
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1 Introduction

Autism is a neurodevelopmental disorder of brain functiwett has begun to attrait vivo struc-
tural magnetic resonance imaging (MRI) studies in the regibthe corpus callosum (Pivest
al., 1996, 1997; Egaast al. 1995, Hardaret al., 2000; Manet al., 1999). There is little un-
derstanding about the link between the functional defictt #tre underlying abnormal anatomy
in autism, which provides motivation for our study. Thesglgts use the Witelson partition or a
similar partition scheme of the corpus callosum (Witelst®89). Witelson partitioned the mid-
sagittal cross-sectional images of the corpus callosumgaliee maximum anterior-posterior line
(Talairach and Tournoux, 1988) and defined the region of #mugrostrum, midbodies, isthmus
and splenium from the anterior to posterior direction. Bamedhe Witelson partition, there has
been a consistent finding in abnormal reduction in antemddpody and posterior of the corpus
callosum (Brambilleet al., 2003).

Pivenet al. (1997) compared 35 autistic individuals with 36 normal colndubjects controlling
for total brain volume, gender and IQ and detected a stzistisignificant smaller midbody and
posterior regions of the corpus callosum in the autistimmgroManeset al. (1999) compared 27
low functioning autistic individuals with 17 normal contscaadjusting for the total brain volume.
They found a smaller corpus callosum compared to the cogtmlp in genu, rostrum, anterior
midbody, posterior midbody and isthmus but did not find statally significant differences in the
rostrum and the splenium although the sample mean of theinogtnd splenium size are smaller
than that of the control group. Hardanal. (2000) compared 22 high functioning autistic to 22
individually matched control subjects and showed smabk&ugand rostrum of the corpus callosum
adjusting for the total brain volume based on the Witelsamitgan. The smaller corpus callosum
size was considered as an indication of a decrease in iméspkeric connectivity. They did
not detect other regions of significant size difference. &oextensive review of structural MRI
studies for autism that have been published between 1968GH8] one may refer to Brambilk
al. (2003).

The shortcoming of the Witelson partition is the artifici@rfitioning. The Witelson partition
may dilute the power of detection if the anatomical differemccurs near the partition boundary.
Alternative voxel-wise approaches that avoid predefingbores of interests (ROI) have begun
to be used in structural autism studies. Vidahl. (2003) used the tensor-based morphometry
(TBM) to show reduced callosal thickness in the genu, midkaty splenium in autistic children.
Abell et al. (1999) used voxel-based morphometry (VBM) (Wrightal., 1995; Ashburner and



single subject smoothed image sample mean

Figure 1: Left: white matter segmentation of an individuadisagittal MRI from SPM’99. Middle:
2D Gaussian kernel smoothing of the white matter segmentatith 12mm FWHM. Right: the
sample mean of the smoothed white matter density for cogtmlps.

Friston, 2000, 2001; Gooet al., 2001) in high functioning autism to show decreased grayenat
volume in the right paracingulate sulcus, the left occipgmporal cortex and increased amygdala
and periamygdaloid cortex. The advantage of the VBM framkvawer the Witelson partition
approach is that it is completely automated and does noiresgificial partitioning of the corpus
callosum that introduces undesirable bias. Further it isrestricted toa priori ROIs enabling
us to perform the statistical analysis at each voxel levdltarpinpoint the exact location of the
anatomical differences. Let us review the basis of VBM andatsnection to ROl morphometry.

2 Methods

Voxel-based mor phometry

VBM as implemented in SPM’99 computer package (Wellcome Diepent of Cognitive Neurol-
ogy, London, UK, http://www.fil.ion.ucl.ac.uk/spm) stamvith normalizing each structural MRI
to the standard SPM template and segmenting it into whitegray matter and cerebrospinal
fluid based on a Gaussian mixture model (Ashburner and Fri4@97, 2000). Based on a prior
probability of each voxel being the specific tissue type, ad3@n approach is used to get a bet-
ter estimate of the posterior probability. This Bayesianaipf the probability is iterated many
times until the probability converges. This probabilityusually referred to adensity. Note that



this is not physical density so it should be interpreted philstically. There has been on going
discussions on the amount of image registration and maduolay the determinant of the Jacobian
of deformation fields in VBM (Bookstein, 2001; Ashburner angstem, 2001; Mehtat al., 2003).

In our study, we applied the 2D version of VBM on the midsagittass section of 3D MRI
(Figure 1). Letp(x),z € R? be the white matter density of the 2D midsagittal cross saabf
corpus callosunf2. Denotelg(z) = 1if z € 2 and0 otherwise. The shape 6f is random and
we associate it with probability(x),

P(z € Q) = p(z).

Then the area of the corpus callos@his given by

A(Q) = / 1o(z) da.

From this, by taking the expectation, we estimate the areamius callosum as

A(Q) =EA(Q) = /Elg(x) dz = /p(x) da. (1)

So the sum of the white matter density over all voxels givesa@gproximation to the area of the
corpus callosum. In this context, ROl morphometry used weéet al. (1997), Hardaret al.
(2000) and Manest al. (1999) can be viewed as a subset of VBM framework. For inst&@ke
morphometry based on Witelson partition can be performeddgmenting the normalized 2D
midsagittal images.

The white matter density is a probability ranging betweem® & so it is not exactly normally
distributed. To make it more normal, one may apply Ittt transform
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However we did not perform the logit transform since we addphe usual Gaussian kernel
smoothing with relatively large 12mm FWHM to make the whitett@adensity more normal
(Figure 1). For detailed distributional assumptions, org mefer to Ashburner and Friston (2000)
and Salmondt al. (2002). LetK, be a Gaussian kernel that follows bivariate noriab, o27).
Kernel smoothing of scalar functignis defined as convolution

/K  p(a //K v—y dydx—/p(y)dy. 2)

From equation (1) and (2) it can be seen that the area estimate

:/Ko*p(x) dz
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autism control difference

Figure 2: The sample mean of the white matter density of thistaugroup (left) and the control
group (middle) respectively. The third figure is the difiece of the sample mean. We are inter-
ested in testing if this difference is statistically sigrafnt. Simply comparing the white matter
density difference, the autistic group shows less whitetenaoncentration in the genu and the
splenium of the corpus callosum.

is invariant under scale change. This can be used to estimate the corpus callosunirarea

VBM white matter density maps. Assuming normality for keraeloothingk,, * p, A(2) would
be normal so the usual statistical tests based on normalitype applicable.

Two sample t-test

Letpl,--- ,p™(m = 16) be the white matter density for autism apd - - - , p?(n = 12) be the
white matter density for controls at a given voxel. We asspine N (u,,0>) andp! ~ N(u., c?)
independently. We denote the sample mean and the varian¢eaoflp? by p,, p., 5%, S? respec-
tively.

First we test if the autistic group has more white matteralaility in the corpus callosum:
Hy:02=02vs. H, : 02 > o2

Under the null assumption, the ratio of the sample variafgs$? has anF distribution with

m — 1 andn — 1 degrees of freedom. ThE-map is given in Figure 3 where the splenium of
the autistic group shows statistically significant largeriability. In this region, the autism shows
nine times more variabilityytvalue 0f0.0004). Now we test if the white matter density difference
between the autistic group and the control group is stediltyi significant (Figure 2):

Ho : po = pe vS. Hy g < fic, 3)

6



autism control F map

Figure 3: The sample standard deviations of autism (left) @ntrol (middle) respectively. The
last figure shows thé-map showing upto 9 times more variability of the white mattencentra-
tion in the splenium of the autistic group. The genu and thdbimily also show larger white matter
concentration variability but they are not as predominartha splenium.

The classical test statisti€ for the Behrens-Fisher problem depends on the unknown regsan
parameter, ando, that are estimated by sample variances (Tsui and Weerghi£g89):
d, — d,
~tq..
V/S2/m+ S2/n

where the degrees of freedahy. of thet-distribution is estimated by

(S2/m+ S2/n)?
(S2/m)?/(m —1) + (S2/n)?/(n— 1)

However, since the degrees of freeddni. = m + n — 2 = 26 is relatively high in our study, we

d.f. =

may pool the variance and use the pooled two sarptatistic
d, — d. .
Sp /71/771 T 1/71 m+n—2

where the pooled varianc® = ((m — 1)S? 4 (n — 1)S7)/(m +n — 2). In fact we did not see
much difference betweemnstatistic images in two cases so we will pool the varianoeghe two

samplet-test. The advantage of pooling the variance is that théssta distribution becomes
exact. However care should have taken when pooling then@isince it can be shown to lead to
erroneous conclusions when it is applied when populatioianee are different for small sample
size. An alternate approach would be to use the concegérafalized p-value which provides
exact probability statments in the presence of unisancanpeters (Tsui and Weerahandi, 1989).
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Figure 4: Left: two sample statistics. Middle:p-value map thresholded étl. Right: p-value
represented in logarithmic scale. The log scale is usefdisplayingp-value map. The splenium
and the genu of the corpus callosum show huge white mattesielefy in autism compared to
control.
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In the place of a test statistic, they use so called generhlzst variable and the corresponding
p-value can be computed exactly. For multiple comparisoh dloaount for spatially correlated
errors, one may use the result of the random field theory (Mipes. al., 1996), the false positive
rates approach (Geneveeeal., 2002; Benjamini and Hochberg, 1995) or random permutation
tests (Nichols and Homles, 2002) but we will not discuss this paper.

General linear models

Since all subjects are different in age and 1Q, there migltdsgounding effects of age and 1Q on
the white matter density. Previous anatomical studieserctirpus callosum suggest this (Bram-
billa et al., 2003). On the other hand, deformation-based morphometiytensor-based mor-
phometry in the normal developmental studies in childreswsthat there is relative brain tissue
growth in the corpus callosum over time (Chugt@l., 2001; Thompsomt al., 2000). In particu-
lar, Chunget al. (2001) showed white matter local volume increase in the pdgbisthmus and
splenium of the corpus callosum in 28 normal subjects froro 1B years (Figure 5). In our study,
the age for the control group i§.1 + 2.8 and for the autism group it is6.1 + 4.5 years. The age
ranges for two groups are somewhat compatible; however tingght be still age effect on the
white matter difference. To evaluate any possible effeeigef on the white matter density, we first
fit linear models

density = \; + \, - age (4)



t-maps of Jacobian difference

Figure 5: The statistic maps of brain volume change for children. The Baeoof the deformation
fields is computed and used as a metric for measuring locam@in Chunget al. (2001). Red
color indicates the brain tissue growth over time and blderde atrophy. The midbody, isthmus
and splenium show white matter volume increase.

Figure 6: The simple linear fit correlating the white mattensity to age at the genu (a), midbody
(b) and the splenium (c). Red color is the autism group and @bl is the control group. The
splenium seems to show obvious white matter deficiency irsmubut group differences in the
genu and the midbody are unclear due to different assongtiath age in each group.
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Figure 7: Linear regression of the white matter density an dgnear growth modelensity =

A1 + Ay - age is fitted for each group separately,; is the intercept and, is the slope of the
regression line. The autistic group shows lower white matémsity compared to the control at
lower age but gains white matter over time while the controbig shows decreasing white matter
density with age. The control group sho®$% /year decrease in white matter concentration
in the midbody while the autistic group sho@$% /year increase of white matter in the genu.
F-test was performed for the fit of the linear model and R'>alue is computed.

10



to each group separately using the least-squares meth@tlatvexel (Figure 6 and Figure 7).
The liner model fit shows the dynamic pattern of differenttemnatter density changes over time
between groups. The pattern of growth in the corpus calloseems different. The autistic group
shows lower white matter density compared to the contraligrat the lower age but gains white
matter over time while the control group shows decreasingewhatter density with age. There
thus appears to be age differences for at least some reditresaorpus callosum and these should
be accounted for.

One approach for removing the age effect would be to modti&tevhite matter density such
that the age effect will not be present. First we estimgtand \, for each group via the least
squares method. Then adjust the white matter dedgiyat timet via transform

d(t) — d(t) + \(f — 1),

where)\, is the least-squres estimation)ofandt is the mean age of both the controls and autistic
combined together. This has an effect of modulating theiieasneasured at different age to fixed
reference agé A more general approach would be to use a general linearI@t#1). The gen-
eral linear model (GLM) is a flexible framework that can bediselocalizing the region of white
matter concentration that are related to covariates suay@slQ, gender and handness. Statis-
tical frameworks such as the analysis of variance (ANOVAg, inultivariate analysis of variance
(MANOVA), the analysis of covariance (ANCOVA) and the muéthnate analysis of covariance
(MANCOVA) can be viewed as special cases of the GLM.

We consider the following GLM:
density = A1 + Ay - age + (31 - group + ¢,

where the dummy variableroup is 1 for autism and) for control. In this formulation, we do not
have separate linear equations as before but combine aatidraontrol group data together and
have a single linear equation. A similar linear model foratiain in the VBM is used in localizing
the region of the gray matter maturation in children (Petwd., 1999). To formulate the problem

in somewhat general fashion, tet= (21, - - - , z;) to be nuisance variables suchage andIQ and
x = (x1,--- ,x,) to be the variable of interest such@up. Then we have GLM in the following
form

p=2z\A\+Xx0+¢€

whereX = (Ay,---, \y) andg = (54, -+, B,)". We assume the usual mean zero Gaussian noise.
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Then we test
Hy:Ep=zAvs. H, : Ep =z + x0. (5)

It is equivalent to testing
HQIﬁZOVS.Hliﬁ%O.

The fit of model is measured by the residual sum of squaresa@umm of he squared errors (SSE):

m+n

SSE = > (pi—ziho)”
i=1

m+n

SSE = Z(pz - Zi;\l - XiBl)Q;

=1

wherey, A1, 31 are the least squares estimators of the parameters; amtix; are data fori-th
subject. Underd,

__ (SSE - SSE)/p
SSE/(m+n—p—k)

The larger thel” value, it is more unlikely to accefi,. For our data, we are testing for group

F ~ Fp,m—‘rn—p—k' (6)

difference controlling for age effect $o= 2 andp = 1.

Subjects and image acquisition

Gender and handedness affect the corpus callosum anatoitsisgi, 1985; Witelson, 1989;
Luders, 2003) so all the 16 autistic and 12 control subjeseslin this study are right-handed males
except one subject who is ambidextrous. Sixteen autishjests were recruited for this study from
a list of individuals with a diagnosis of high functioningtem in the Madison and Milwaukee
area maintained for research purposes by the Waisman cantlee University of Wisconsin-
Madison. Diagnoses were confirmed with the Autism Diagolstierview - Revised (ADI-R)
or clinical interview administered by a trained and certifgsychologist at the Waisman center.
All participants met DSM-1V criteria for autism or Aspergepervasive developmental disorder.
Twelve healthy, typically developing males with no currenpast psychological diagnoses served
as a control group. The average age for contral’ig + 2.8 and autism id6.1 + 4.5 which is in
compatible age range.

T;-weighted MRI scans were obtained with a 3 Tesla GE scannprafigle30°, field of view
24cm,256 x 192 matrix size with 1.2mm slice thickness). MRIs were normaliaed segmented

12



Figure 8: Contour plots af’-map showing the statistically significant white matter slgndiffer-
ence controlling for age effect superimposed on top of threnatized mean of 12 control subjects.
Left: F-map is superimpose on top of the sample mean of the norrdaiirges. RightF-map is
superimposed on top of the sample mean of the normalizedraadteed images. It shows white
matter density difference occurs in the genu and the spieniu

as described in the previous section. Then the midsagittascsections of the white matter seg-
mented images showing the corpus callosum were extracttdranothed with 12mm 2D Gaus-
sian kernel (Figure 1).

3 Resaults

First we fit the white matter density change over age via ligeawth model (4). The white matter
increase oR.5% per year in the genu of the autistic group and decreae>6§ per year in the
midbody of the control group are statistically significaRigure 6 and 7). Since there is no age
effect in the splenium, the white matter difference in tlegfion should be largely due to the group
difference while the white matter difference detected mglenu may be in fact due to a possible
age effect. So we refitted GLMs (5) as described in the prevéaetion and computed statistic
map. We found statistically significant white matter deficigin the genuP—value = 0.044) and
the splenium P-value = 0.005, maximum’-value = 9.5). Itis interesting to note that the splenium
is the region of high variability for the autistic group (Eig 3). In the splenium we found 9 times
more variable white matter density-¢alue 0f0.0004).

13
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Figure 9: Null data is constructed by randomly selectingo®16 autism and 6 from 12 controls
and combine them together to form a group consisting of 14festdb Combining the remaining
14 subjects formed the second group. Then two samfdsts are performed on these null data.
For 3 different random permutations, the statistical sigance of white matter difference is much
lower than the real data indicating no image processintpatsi.

Comparing GLM results (Figure 8) with the two sampieest results not taking account for the
age effect (Figure 4), we see similafavalue map in both cases indicating the age effect in our
study is negligible due to the compatible age range betwezumpg.

To check for possible image processing artifacts, we agpligr statistical tests on null data
constructed from randomly selecting 8 from 16 autism andoénfil2 controls and combining
them together to form a new group consisting of 14 subjectslfdaing the remaining 14 subjects
formed the second new group. Afterwards, the same staiisgsts were performed on the null
data revealing no significant result other than due to ram#m® For instance the two sample
t-test is performed in null data and the resultirgap shows insignificant results for three random
permutations (Figure 9). A similar approach of generatinly siata and checking possible image
processing artifacts has been proposed in Chaiag (2003) for a child brain development study.

4 Discussion

The 2D version of the voxel-based morphometry was used imitlsagittal cross section of MRI

qguantifying the white matter deficiency in high functioniagtism. Accounting for an age effect,
statistically significant white matter deficiency in the geand splenium of the corpus callosum
was detected in the autistic group but there is no signifiddfgrence in the midbody. This may

14



suggest impaired inter-hemispheric connectivity in fedb@ind particularly temporal and occipital

regions. It is interesting to note that Pivenal. (1996) found increased volume of the parietal,
temporal and posterior lobes but not the frontal lobes irsautompared to normal control. The

deficit in splenium white matter may be associated with theoaialities in face processing and
particularly in the identification of emotion in faces (Daitet al., 2003). In normal subjects, faces
activate the right fusiform area and the verbal identifmatf the emotion in a face likely requires

transfer of information between the hemispheres in thengpphe region. The deficit found here

in the autism group may at least in part underlie the abnatiesin emotional face processing

observed in this group (Dalton et al., 2003).

Linear growth models were fitted for autism and control gogpparately to show different
pattern of white matter density change over time. Subjedts autism shows lower white matter
concentration at the lower age range in almost all part ottrpus callosum but the white matter
density increases over age. On the other hand, the norm@btgroup shows a higher concentra-
tion of the white matter at younger ages, but decreasingityguerticularly in the midbody with
increase in age. The smaller callosal size in the genu aedisiph might be attributed to hypopla-
sia rather than atrophy. In particular we found a statifl§icignificant2.5% /year increase of the
white matter in the genu for the autistic group.

A similar result was obtained using tensor-based morphgmetere Vidalet al. (2003) com-
pared 15 autistic subjects of ag® + 3.2 years to a group of 13 control subjects of daget 2.1
years. They found the most significant reduction of the cegallosum size in the genu, splenium
and midbody in decreasing order. The difference with oueldrased morphometry result might
be due to the different morphometric techniques plus masegmentation used in Vidat al.
(2003) while no manual segmentation of any sort was appheair study.
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