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Cosine series representation of 3D curves and its
application to white matter fiber bundles in
diffusion tensor imaging
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We present a novel cosine series representation for encod-
ing fiber bundles consisting of multiple 3D curves. The coor-
dinates of curves are parameterized as coefficients of cosine
series expansion. We address the issue of registration, aver-
aging and statistical inference on curves in a unified Hilbert
space framework. Unlike traditional splines, the proposed
method does not have internal knots and explicitly repre-
sents curves as a linear combination of cosine basis. This
simplicity in the representation enables us to design statisti-
cal models, register curves and perform subsequent analysis
in a more unified statistical framework than splines.

The proposed representation is applied in characterizing
abnormal shape of white matter fiber tracts passing through
the splenium of the corpus callosum in autistic subjects. For
an arbitrary tract, a 19 degree expansion is usually found to
be sufficient to reconstruct the tract with 60 parameters.

AMS 2000 subject classifications: Primary 62H35,
68U10; secondary 62M40.
Keywords and phrases: Cosine series representation,
Curve registration, Curve modeling, Fourier descriptor, Dif-
fusion tensor imaging, White matter tracts.

1. INTRODUCTION

Diffusion tensor imaging (DTI) has been used to charac-
terize the microstructure of biological tissues using magni-
tude, anisotropy and aniotropic orientation associated with
diffusion [2]. It is assumed that the direction of greatest
diffusivity is most likely aligned to the local orientation
of the white matter fibers. White matter tractography of-
fers the unique opportunity to characterize the trajectories
of white matter fiber bundles noninvasively in the brain.
Whole brain tractography studies routinely generate up to
half million tracts per brain. Various deterministic trac-
tography have been used to visualize and map out ma-
jor white matter pathways in individuals and brain atlases
[3, 8, 14, 31, 34, 35, 43, 47]; however, tractography data can
be challenging to interpret and quantify. Recent efforts have
attempted to cluster [36] and automatically segment white
∗Corresponding author.

matter tracts [37] as well as characterize tract shape param-
eters [4]. Many of these techniques can be quite computa-
tionally demanding. Clearly efficient methods for represent-
ing tract shape, regional tract segmentation and clustering,
tract registration and quantification would be of tremendous
value to researchers.

In this paper, we present a novel approach for parame-
terizing white matter fiber tract shapes using a new Fourier
descriptor. Fourier descriptors have been around for many
decades for modeling mainly planar curves [38, 42]. They
have been previously used to classify tracts [4]. The Fourier
coefficients are computed by the Fourier transform that in-
volves the both sine and cosine series expansion. Then the
sum of the squared coefficients are obtained up to degree
30 for each tract and the k-means clustering is used to clas-
sify the fibers globally. Our approach differs from [4] in that
we obtain local shape information employing cosine series
only, without using both the cosine and sine series making
our representation more compact. Using our new compact
representation, we demonstrate how to quantify abnormal
pattern of white matter fibers passing through the splenium
of the corpus callosum for autistic subjects.

Splines have also been widely used for modeling and
matching 3D curves [13, 23, 29]. Unfortunately, splines are
not easy to model and to manipulate explicitly compared
to Fourier descriptors, due to the introduction of internal
knots. In Clayden et al. [13], the cubic-B spline is used to pa-
rameterize the median of a set of tracts for tract dispersion
modeling. Matching two splines with different numbers of
knots is not computationally trivial and has been solved us-
ing a sequence of ad-hoc approaches. In Gruen et al. [23], the
optimal displacement of two cubic spline curves are obtained
by minimizing the sum of squared Euclidean distances. The
minimization is nonlinear so an iterative updating scheme is
used. On the other hand, there is no need for any numerical
optimization in obtaining the matching in our method due
to the very nature of the Hilbert space framework. We will
show that the optimal matching is embedded in the rep-
resentation itself. Instead of using the squared distance of
coordinates, others have used the curvature and torsion as
features to minimized to match curves [25, 29, 33]. In partic-
ular, Corouge et al. used cubic B-splines for representation
fiber tracts and then curvature and torsion were used as [15].
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Figure 1. Left: control points (red) are obtained from the
second order Runge-Kutta streamline algorithm. Subsampled
500 tracts with length larger than 50mm are only shown here.
Yellow lines are line segments connecting connecting control
points. Right: 19 degree cosine series representation of tracts.

In summary, this paper makes the following contibutions:
(i) Introduce a more compact Fourier descriptor that uses
only the half the number of basis; (ii) Show that curve
matching can be done without any numerical optimization;
(iii) Show how to perform a statistical inference on fiber
bundles consisting of multiple 3D curves. The MATLAB imple-
mentation for the cosine series representation can be found
in brainimaging.waisman.wisc.edu/~chung/tracts.

2. 3D CURVE MODELING

We are interested in encoding a smooth curve M consist-
ing of n noisy ordered control points p1, . . . , pn. Consider a
mapping ζ−1 that maps the control point pj onto the unit
interval [0, 1] as

ζ−1 : pj →
∑j

i=1 ‖pi − pi−1‖∑n
i=1 ‖pi − pi−1‖

= tj .(1)

This is the ratio of the arc-length from the point p1 to pj , to
p1 to pn. We let this ratio to be tj . We assume ζ−1(p1) = 0.
The ordering of the control points is also required in obtain-
ing smooth one-to-one mapping. Then we parameterize the
smooth inverse map

ζ : [0, 1] → M

as a linear combination of smooth basis functions.

2.1 Eigenfunctions of Laplacian

Consider the space of square integrable functions in [0, 1]
denoted by L2[0, 1]. Let us solve the eigenequation

Δψ + λψ = 0(2)

in L2[0, 1] with 1D Laplacian Δ = d2

dt2 . The eigenfunctions
ψ0, ψ1, . . . form an orthonormal basis in L2[0, 1]. Instead of

solving (2) in the domain [0, 1], we solve it in the larger
domain R with the periodic constraint

ψ(t + 2) = ψ(t).(3)

The eigenfunctions are then Fourier sine and cosine basis

ψl = sin(lπt), cos(lπt)

with the corresponding eigenvalues λl = l2π2. The period
2 constraint forces the basis function expansion to be only
valid in the intervals . . . , [−2,−1], [0, 1], [2, 3], . . . while there
are gaps in . . . , (−1, 0), (1, 2), (3, 4), . . .. We can fill the gap
by padding with zeros but this will result in the Gibbs phe-
nomenon (ringing artifacts) [10] at the points of jump dis-
continuities.

One way of filling the gap automatically while making the
function continuous across the whole intervals is by putting
the constraint of evenness, i.e.

ψ(t) = ψ(−t)(4)

Then the only eigenfunctions satisfying two constraints (3)
and (4) are the cosine basis of the form

ψ0(t) = 1, ψl(t) =
√

2 cos(lπt)(5)

with the corresponding eigenvalues λl = l2π2 for integers l >
0. The constant

√
2 is introduced to make the eigenfunctions

orthonormal in [0, 1] with respect to the inner product

〈ψl, ψm〉 =
∫ 1

0

ψl(t)ψm(t) dt = δlm,(6)

where δlm is the Dirac-delta function. With respect to the
inner product, the norm ‖ · ‖ is then defined as

‖ψ‖ = 〈ψ, ψ〉1/2.

2.2 Cosine representation

Model. Denote the coordinates of ζ as (ζ1, ζ2, ζ3). Then
each coordinate is modeled as

ζi(t) = μi(t) + εi(t),(7)

where μi is an unknown smooth function to be estimated
and εi is a zero mean random field, possibly Gaussian. In-
stead of estimating μi in L2[0, 1], we estimate in a smaller
subspace Hk, which is spanned by up to the k-th degree
eigenfunctions:

Hk = {
k∑

l=0

clψl(t) : cl ∈ R} ⊂ L2[0, 1].

Then the least squares estimation of μi in Hk is given by

μ̂i = arg min
f∈Hk

‖f − ζi(t)‖2.
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Obviously, the minimization is simply given as the k-th de-
gree expansion:

μ̂i =
k∑

l=0

〈ζi, ψl〉ψl.(8)

With this motivation in mind, we have the following k-th
degree cosine series representation for a 3D curve:

ζi(t) =
k∑

l=0

cliψl + εi(t),(9)

where εi is a zero mean random field. It is also possible to
have slightly different but equivalent model that will be used
for statistical inference. Assuming Gaussian random field, εi

can be expanded using the given basis ψl as follows.

εi(t) =
k∑

l=0

Zlψl(t) + ei(t),

where Zl ∼ N(0, τ2
l ) are possibly correlated Gaussian and ei

is the residual error field that cab be neglected in practice.
This is the direct consequence of the Karhunen-Loeve ex-
pansion [1, 16, 30, 46]. Therefore we can equivalently model
(9) as

ζi(t) =
k∑

l=0

Xlψl(t) + ei(t),(10)

where Xl ∼ N(cli, τ
2
l ).

Estimation. We only observe the curve M in finite num-
ber of control points ζj(t1), . . . , ζj(tn) so we further need to
estimate the Fourier coefficient cli = 〈ζi, ψl〉 as follows. At
control points we have normal equations

Yn×3 = Ψn×kCk×3,

where

Yn×3 =

⎛⎜⎜⎜⎝
ζ1(t1) ζ2(t1) ζ3(t1)
ζ1(t2) ζ2(t2) ζ3(t2)

...
...

...
ζ1(tn) ζ2(tn) ζ3(tn)

⎞⎟⎟⎟⎠ ,

Ψn×k =

⎛⎜⎜⎜⎝
ψ0(t1) ψ1(t1) · · · ψk(t1)
ψ0(t2) ψ1(t2) · · · ψk(t2)

...
...

. . .
...

ψ0(tn) ψ1(tn) · · · ψk(tn)

⎞⎟⎟⎟⎠ ,

Ck×3 =

⎛⎜⎜⎜⎝
c01 c02 c03

c11 c12 c13

...
...

...
ck1 ck2 ck3

⎞⎟⎟⎟⎠ .

Figure 2. Cosine representation of a tract at various degrees.
Red dots are control points obtained from a streamline based
tractography. The degree 1 representation is a straight line

that fits all the control points in a least squares fashion. The
degree 19 representation is used through the paper.

The coefficients are simultaneously estimated in the least
squares fashion as

Ĉ = (Ψ′Ψ)−1Ψ′Y.

The proposed least squares estimation technique avoids
using the Fourier transform (FT) [4, 7, 24]. The drawback
of the FT is the need for a predefined regular grid system
so some sort of interpolation is needed. The advantage of
the cosine representation is that, instead of recording the
coordinates of all control points, we only need to record
3 · (k +1) number of parameters for all possible tract shape.
This is a substantial data reduction considering that the
average number of control points is 105 (315 parameters).
We recommend readers to use 10 ≤ k ≤ 30 degrees for most
applications. In our application, we have used degree k = 19
through out the paper (Figure 2). This gives the average
absolute error of 0.26mm along the tract. The MATLAB code
for performing the least squares estimation can be obtained
from brainimaging.waisman.wisc.edu/~chung/tracts.

2.3 Optimal representation

We have explored the possibly of choosing the optimal
number of basis using a stepwise model selection framework.
This model selection framework for Fourier descriptors was
first presented in [10, 11]. Although increasing the degree
of the representation increases the goodness-of-fit, it also
increases the number of estimated coefficients linearly. So it
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Figure 3. The plot of the sum of squired errors (SSE) for
degree between 1 and 50. SSE rapidly flattens out around

degree 15–20. The blue, red and green lines are the SSE plot
of x, y and z coordinates respectively.

is necessary to stop the series expansion at the degree where
the goodness-of-fit and the number of coefficients balance
out.

Assuming up to the (k−1)-degree representation is proper
in (9), we determine if adding the k-degree term is statisti-
cally significant by testing

H0 : cki = 0.

Let the k-th degree sum of squared errors (SSE) for the i-th
coordinate be

SSEk =
n∑

j=1

[
ζi(tj) −

k∑
l=0

ĉliψl(tj)
]2

,

where ĉli are the least squares estimation. The plot of SSE
for varying degree 1 ≤ k ≤ 50 a particular tract is shown in
Figure 3. As the degree k increases, SSE decreases until it
flattens out. So it is reasonable to stop the series expansion
when the decrease in SSE is no longer significant. Under H0,
the test statistic F follows

F =
SSEk−1 − SSEk

SSEk−1/(n − k − 2)
∼ F1,n−k−2,

the F -distribution with 1 and n− k − 2 degrees of freedom.
We compute the F statistic at each degree and stop increas-
ing the degree of expansion if the corresponding p-value first
becomes bigger than the pre-specified significance α = 0.01.
The forward model selection framework hierarchically builds
the cosine series representation from lower to higher degree.

In many Fourier descriptor and spherical harmonic repre-
sentation literature, the issue of the optimal degree has not

been addressed properly and the degree is simply selected
based on a pre-specified error bound [7, 19, 24, 40, 41]. Since
the stepwise model selection framework chooses the opti-
mal degree for each coordinate separately, we have chosen
the maximum of optimal degrees for all coordinates. The
optimal degree changes if a different tract is chosen. For in-
stance, the optimal degrees for 4,987 randomly chosen whole
brain white matter tracts longer than 30mm are 13.94±7.02
and the upper 80 percentile is approximately 19. For simplic-
ity in numerical implementation and inference, it is crucial
to choose the same fixed degree for all tracts. We do not
want to choose the degree 14 as optimal since then about
50% of tracts will not be represented optimally. Therefore,
we have chosen the degree corresponding to the upper 80
percentile to be used through the paper.

We have also checked if the optimal degree is related to
the length but found no relation. The correlation between
the length of tracts and the optimal degree is 0.06, which is
statistically insignificant. The increased degree should cor-
respond to the increased curvature and bending rather than
the the length of tracts. This issue is left as a future research
and we did not pursue it any further.

3. 3D FIBER BUNDLE MODELING

Using the cosine series representation, we show how to
analyze a collection of fiber bundles consisting of similarly
shaped curves. The ability to register one tract to another
tract is necessary to establish anatomical correspondence
for a subsequent population study. Since curves are rep-
resented as combinations of cosine functions, the registra-
tion will be formulated as a minimization problem in the
subspace Hk which avoids brute-force style numerical opti-
mization schemes given in [23, 25, 29, 33, 39]. This simplicity
makes the cosine series representation more well suited than
the usual spline representation of curves [23] in subsequent
statistical analysis.

3.1 Registering 3D curves

With the abuse of notations, we will interchangeably use
curves to be estimated and their estimation with the same
notations when the meaning is clear. Let the cosine series
representation of two curves η and ζ be

η(t) =
k∑

l=0

ηlψl(t),(11)

ζ(t) =
k∑

l=0

ζlψl(t)(12)

where ηl and ζ are the Fourier coefficient vectors.
Consider the displacement vector field u = (u1, u2, u3)

that is required to register ζ to η. We will determine an
optimal displacement u such that the discrepancy between
the deformed curve ζ+u and η is minimized with respect to
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Figure 4. Left: the curve ζ is registered to η by the
displacement vector field u. The other intermediate curves are
generated by plotting ζ + αu∗ with α ∈ [0, 1] to show how
the different amount of displacement deforms the curve ζ.
Right: the average of a fiber bundle consisting of 5 tracts.

a certain discrepancy measure ρ. The discrepancy measure
ρ between η and ζ are defined as the integral of the sum of
squared distance:

ρ(ζ,η) =
∫ 1

0

‖ζ(t) − η(t)‖2 dt.(13)

The discrepancy ρ can be further simplified as

ρ(ζ,η) =
∫ 1

0

3∑
j=1

[
k∑

l=0

(ζlj − ηlj)ψl(t)

]2

dt

=
3∑

j=1

k∑
l=0

(ζlj − ηlj)2.

We have used the orthogonality condition (6) to simplify the
expression. The algebraic manipulation will show that the
optimal displacement u∗, which minimizes the discrepancy
between ζ + u and η, is given by

u∗(t) = arg min
u1,u2,u3∈Hk

ρ(ζ + u, η)(14)

=
k∑

l=0

(ηl − ζl)ψl(t).(15)

The proof requires substituting

u(t) =
k∑

l=0

ulψl(t)

in the expression (14), which becomes the unconstrained
positive definite quadratic program with respect to variables
ul = (ul1, ul2, ul3). So the global minimum always exists
and obtained when ρ(ζ + u∗,η) = 0. Figure 4 shows the
schematic view of registration.

The simplicity of our approach is that curve registration
is done by simply matching the corresponding Fourier co-
efficients without any sort of numerical optimization as in
spline curve matching.

3.2 Inference on fiber bundles

Based on the idea of registering tracts by matching co-
efficients, we construct the average of a white fiber bundle
consisting of m curves ζ1, . . . , ζm by finding the optimal
curve that minimizes the sum of all discrepancy in Hk:

ζ(t) = arg min
ζ1,ζ2,ζ3∈Hk

m∑
j=1

ρ(ζj , ζ).

Again the algebraic manipulation will show that the op-
timum curve is obtained by the average of representation:

ζ(t) =
1
m

m∑
j=1

k∑
l=0

ζj
l ψl(t) =

k∑
l=0

ζlψl(t),(16)

where ζl is the average coefficient vector

ζl =
1
m

m∑
j=1

ζj
l .

Again, this simplicity is the consequence of Fourier se-
ries having the best representation in the Hilbert space. So
any optimization involving our quadratic discrepancy will
simplify the expression as the sum of squared Fourier coef-
ficients making the problem a fairly simple quadratic prob-
lem. As an illustration, we show how to average five tracts
in Figure 4.

Similarly we can define the sample variance of m curves
and it will turn out to be the cosine representation with
the coefficient vector consisting of the sample variance of m
coefficients. The construction of the sample variance of m
curves should be fairly straightforward and we will not go
into the detail.

The next question we investigate is that given another
population of curves η1, . . . ,ηn, how to perform statistical
inference on the equality of curve shape in the two popula-
tions. The null hypothesis of interest is then

H0 : ζ = η.(17)

Here we again abused the notation so we are testing the
equality of mean representations of populations. From the
very property of Fourier series in Hilbert space, the unique-
ness of the cosine series representation is guaranteed so the
two representations are equal if and only if the coefficients
vectors match. Therefore, the equivalent hypothesis to (17)
is given by

H ′
0 : ζ1 = η1, . . . , ζk = ηk.

Obviously this is a multiple comparisons problem. Under
the Gaussian assumption in (10), testing the equality of the
mean coefficient vector can be done using the Hotelling’s T -
square statistic. For correcting for the multiple comparisons,
the Bonferroni correction can be used.
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Figure 5. The splenium of the corpus callosum (marked in orange circle) was manually masked and a streamline based
tractography algorithm was applied to obtain white matter tracts passing through the splenium. The anatomic drawings are

from the wikipedia version of Gray’s Anatomy [22].

4. APPLICATION: AUTISM STUDY

We have applied the cosine series representation to white
matter fibers passing through the splenium of the corpus
callosum. We have mainly chosen this fibers since the sple-
nium is known to exhibit structural abnormality in autism
[9, 32].

4.1 Image preprocessing

Image Acquisition. DTI data were acquired on a Siemens
Trio 3.0 Tesla Scanner with an 8-channel, receive-only head
coil. DTI was performed using a single-shot, spin-echo, EPI
pulse sequence and SENSE parallel imaging (undersampling
factor of 2). Diffusion-weighted images were acquired in 12
non-collinear diffusion encoding directions with diffusion
weighting factor 1000 s/mm2 in addition to a single
reference image. Data acquisition parameters included the
following: contiguous (no-gap) fifty 2.5 mm thick axial slices
with an acquisition matrix of 128 × 128 over a field of view
(FOV) of 256 mm, 4 averages, repetition time (TR) = 7000
ms, and echo time (TE) = 84 ms. Two-dimensional gradient
echo images with two different echo times of 7 ms and 10 ms
were obtained prior to the DTI acquisition for correcting
distortions related to magnetic field inhomogenieties.

Image Processing. Eddy current related distortion and
head motion of each data set were corrected using the
Automated Image Registration (AIR) software [45] and
distortions from field inhomogeneities were corrected us-
ing custom software algorithms based on [28]. Distortion-
corrected diffusion weighted (DW) images were interpolated
to 2×2×2 mm voxels and the six tensor elements were cal-
culated using a multivariate log-linear regression method [2].

The images were isotropically resampled at 1 mm3

resolution before applying the white matter tractography

algorithm. The second order Runge-Kutta streamline algo-
rithm with tensor deflection [31] was used. The trajectories
were initiated at the center of the seed voxels and were
terminated if they either reached regions with the factional
anisotropy (FA) value smaller then 0.15 or if the angle
between two consecutive steps along the trajectory was
larger than π/4. Each tract consists of 105 ± 54 control
points as shown in Figure 1. The distance between control
points is 1mm. Whole brain tracts are stored as a binary
file of about 600MB in size. Whole brain white matter
tracts for 74 subjects are further aligned using the affine
registration [26] of FA-maps to the average FA-map.

Cosine Series Representation. The splenium of the cor-
pus callosum was manually masked by J.E. Lee [32]. See Fig-
ure 5 for the location of the splenium in the brain. Then the
white matter tracts passing through a ball of radius 5mm
at the spleninum are identified. Each subject has 1,943 ±
1, 148 number of tracts passing through the ball. The cosine
series representation was constructed for each tract and re-
sulted in 60 coefficients for characterizing the single tract.
The within-subject tract averaging was easily done within
our representations by averaging the coefficients of the same
degree (Figure 6). Figure 7 shows the 74 average within-
subject tracts color coded according to autism (red) and
controls (blue). We are interested in testing the fiber shape
difference between the groups.

4.2 Results

We have investigated the utility of the proposed para-
metric representation in discriminating the different popula-
tions (42 autistic vs. 32 control subjects) using two different
tests.

Two sample T -test. The average tracts for all 74 subjects
were obtained using the cosine series representation. The
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Figure 6. The average tract (red) of 2,149 fibers (blue) in a single subject. 2,149 fiber tracts are subsampled to show few
selective tracts. The average tract is obtained by averaging the coefficients of all 2,149 cosine representations. The glass brain

is obtained from the average fractional anisotropy map.

Figure 7. Each streamtube is the average tract in a subject. White matter fibers in controls (blue) are more clustered together
with smaller spreading compared to autism (red).

coefficients of the representation are used to discriminate
the groups. The bar plots of all 20 coefficients for 3 coordi-
nates are given in Figure 8. The significance of the mean
coefficient difference for each degree is determined using
the two sample T -test with unequal variance assumption.
The corresponding p-value in − log10 scale is given in also
given. The first three bars (green to light green) in each
degree correspond to the p-values for three coordinates. The
minimum p-values are 0.0362 (x coordinate, degree 15),
0.0093 (y coordinate, degree 6) and 0.0023 (z coordinate,
degree 8). Note that at least 4 coefficients (degree 0, 2, 6,
8) for the z coordinate show p-value smaller than 0.01. The
Bonferroni correction was used to determine the overall
significance across different degrees, we have used The T -
statistics across different degrees. The Bonferroni corrected
p-value for the 8-th degree coefficient of the z coordinate
(by multiplying 20 to 0.0023) is 0.0456 indicating that

there is significant group difference at the particular spatial
frequency. Note that from (5), the 8-th degree corresponds
to the spatial frequency of 4.

Hotelling’s T -square test. The problem of using T -test is
that the inference has to be done for each coordinate sep-
arately. Although T -test gives additional localized informa-
tion (about z coordinate values being responsible for shape
difference), it is not really a clear cut conclusion so we re-
quire an overall measure of significance across different co-
ordinates. Therefore, to avoid using T -test separately for
each coordinate, we use the Hotelling’s T -square statistic
on the vector of 3 coefficients at each degree. The last bar
(yellow) in the − log10 p plot shows the resulting p-values.
These p-values should be interpreted as the measure of over-
all significance of three p-values obtained from the T -tests.
The minimum p-value is 0.0047 at degree 6. After the Bon-
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Figure 8. Bar plots of coefficients for autistic (red) and control (blue) groups. Each row corresponds to the x, y and z
coordinates. The error bars are one standard deviation in each direction. The autistic subjects show larger variability compared
to controls, which is consistent with literature [12]. The last row is the p-value plots in − log10 scale. The p-values of the two

sample T -test corresponding to x, y and z coordinates are given in three bars (green to light green). The last bar (yellow)
shows the p-values of the Hotelling’s T -square test on coefficient vectors.

ferroni correction by multiplying 20, we obtain the corrected
p-value of 0.0939, which would be still considered as signifi-
cant at α = 0.1 level test.

4.3 Simulation

We have performed a simulation study to determine if the
proposed framework can detect small tract shape difference
between two simulated samples of curves. Our simulations
demonstrate the proposed cosine series representation works
as expected.

Taking the parametric curve

(x, y, z) = (s sin s, s cos s, s), s ∈ [0, 10](18)

as a base for simulation, we have generated two groups of
random curves. This gives a shape of a spiral with increas-
ing radius along the z-axis. The first group (red curves in
Figure 9) consists of 20 curves generated by

(x, y, z) = (s sin(s + e1), s cos(s + e2), s + e3).

The second group (blue curves in Figure 9) consists of 20
curves generated by

(x, y, z) = ((s+ e4) sin(s+0.1), (s+ e5) cos(s−0.1), s−0.1).

The non-additive noise is given to perturb (18) a little
bit while to make our procedure blind to the underlying
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Figure 9. Simulated curves obtained from perturbing the basic curve shape (x, y, z) = (s sin s, s cos s, s), s ∈ [0, 10]. The first
figure shows clear group separation while the second figure has too much overlap. We expect the cosine series representation

to work extremely well for the first simulation while it may not work for the second simulation.

additive noise assumption (7). We have performed two
different simulations with a different amount of noise
variability.

Simulation 1. e1, e2, e3 ∼ N(0, 0.12), e4, e5 ∼ N(0, 0.22).
The p-values are all less than 0.00000243 for Hotelling’s
T-square test. The corrected p-value after the Bonferroni
correction is less than 0.00005 indicating very strong
discrimination between the groups for every degree used.
This is evident from the first figure in Figure 9, where we
clearly see group separation.

Simulation 2. In the second simulation, we have increased
the noise variability such that e1, e2, e3 ∼ N(0, 0.22) e4, e5 ∼
N(0, 0.52). The smallest p-values is 0.0147. After correcting
for multiple comparisons, we obtained the corrected p-value
of 0.294 indicating weak group separation in almost all de-
grees used. The second figure in Figure 9 does not show any
clear group separation between the groups.

5. DISCUSSION

We have presented a unified parametric model building
technique for a bundle of 3D curves, and applied the
method in discriminating the shape of white matter fibers
passing through the splenium in autistic subjects. In this
section, we discuss two major limitations of the cosine
series representation.

Similarly shaped tracts. The cosine series representation
assumes the correspondence of two end points of all fiber
tracts. In practice, such assumption is not realistic. A short
fiber may correspond to a segment of a longer fiber. In
this case, the proposed method does not work properly.
However, this is not the major limitation in our seed-based
fiber tract modeling since it is guaranteed that two end
points of all fiber tracts have to match. Also the tracts
that pass through the splenium of the corpus callousm are

Figure 10. The within-subject average tract (red) of 2,149
fibers. 2,149 fiber tracts are subsampled to show few selective
tracts (blue). The average tract is obtained by averaging the

Fourier coefficients of 2,149 cosine representations.

somewhat similar in shape and length (Figure 7). Therefore,
we do not need to worry about the case of matching a short
tract to a longer tract. We are basically matching tracts of
similar shape and length in this study.

Gibbs phenomenon. Gibbs phenomenon (ringing arti-
facts) often arises in Fourier series expansion of discon-
tinuous data. It is named after American physicist Josiah
Willard Gibbs. In representing a piecewise continuously dif-
ferentiable data using the Fourier series, the overshoot of
the series happens at a jump discontinuity (Figure 10). The
overshoot does not decrease as the number of terms increases
in the series expansion, and it converges to a finite limit
called the Gibbs constant. The Gibbs phenomenon was first
observed by Henry Willbraham in 1848 [44] but it did not
attract any attention at that time. Josiah Willard Gibbs re-
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discovered the phenomenon in 1898 [20]. Later mathemati-
cian Maxime Bocher named it the Gibbs phenomenon and
gave a precise mathematical analysis in 1906 [5]. The Gibbs
phenomenon associated with spherical harmonics were first
observed by Herman Weyl in 1968 [18]. The history and
the overview of Gibbs phenomenon can be found in several
literature [17, 27].

The Gibbs phenomenon will likely arise in modeling
arbitrary shaped curves with possible sharp corners. We
have demonstrated the Gibbs phenomenon for a simulated
tract with jump discontinuities in the following simula-
tion.

Simulation. We have simulated 300 uniformly sam-
pled control points along the parameterized curve
(x, y, z) = (t, 0, t) for t ∈ [1, 100) ∪ [200, 300) and
(x, y, z) = (t, 1, t) for t ∈ [200, 300). Figure 10 only shows
the part of the curve with jump discontinuities. The control
points are fitted with the cosine representation with various
degrees. As the degree increases to 200, the representation
suffers from the severe ringing artifacts. The overshoot
shown in Figure 10 does not disappear even as the degree
of expansion goes to infinity. Note that white matter fibers
are assumed to be smooth so we will not likely to encounter
the Gibbs phenomenon in modeling fibers.

Reduction of Gibbs phenomenon. There are few available
techniques for reducing Gibbs phenomenon [6, 21]. Most
techniques are variations on some sort of kernel methods.
For instance, for the Fejer kernel Kn, it can be shown that

Kn ∗ f → f

for any, even discontinuous, f ∈ L2[−π, π] as n → ∞. It
has the effect of smoothing the discontinuous signal f and
in turn the convolution will not exhibit the ringing artifacts
for a sufficiently large n. Particularly related to Fourier and
spherical harmonic descriptors, we have introduced an ex-
ponential weighting scheme [10, 11]. By weighting Fourier
coefficients with exponentially decaying weights, the series
expansion can converge faster and reduce the Gibbs phe-
nomenon significantly.

Instead of the k-th degree expansion (8), we define the
weighted Fourier expansion as

k∑
l=0

e−λlσ〈f, ψl〉ψl(19)

for some smoothing parameter σ. Then it can be shown that
(19) is the finite series expansion of heat kernel smoothing
Kσ ∗ f , where the heat kernel is defined as

Kσ(t, s) =
∞∑

l=0

e−λlσψl(t)ψl(s).

The expansion (19) can be further shown to be the finite
approximation to the solution of heat diffusion

∂

∂σ
g = Δg, g(t, σ = 0) = f(t).

Since the weighting scheme makes the expansion converges
to heat diffusion, the estimation at the jump discontinuity
is smoothed out reducing the Gibbs phenomenon.
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