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Introduction

Pearson’s product-moment correlation [1], in short simple

correlation, has widely been used as a simple index for measur-

ing dependency and the linear relationship between two vari-

ables. In human brain mapping research, it has been mainly

used to map out functional or anatomical connectivity [2-6]. In

this framework, correlations between pairs of voxels are com-

puted and thresholded via the random field theory to reveal the

statistically significant regions of connectivity by testing the

existence of correlation ρ on the template cortex ∂Ω: 

H0 : ρ(p)==0 for all  p∈∂Ω  vs.
(1)

H1 : ρ(p)≠0 for some  p∈∂Ω.

In a different setting, Thompson et al. [7] used the correlation

between genetic factors and the amount of gray matter on the

cortex via a linear model in mapping out the regions of genetic

influence. Our use of correlation is somewhat similar to [7] in

that we correlate anatomical index to non-anatomical index on

the cortex. In this study, we map out the dependency of beha-

vioral measures to an anatomical measure spatially over the

cortex and localize the regions of abnormal correlation differ-

ence between groups. To remove unwanted covariates like age

and total brain size difference, we introduce the concept of par-

tial correlation coefficient, in short partial correlation. Chung

et al. [8,9] has already demonstrated the need for removing the

effect of age and global brain size difference in morphometric

analyses so it is crucial to use partial correlation rather than

the usual simple correlation in our study. Although our correla-

tion mapping strategy can be formulated in terms of a general

linear model (GLM) as in the case of [7], our unified approach
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will provide a more intuitive alternative that is visually com-

prehensive.

As an application, we applied our method in characterizing

abnormal brain-behavior correlation in autism. We correlated

two behavioral measures with the anatomical measure, corti-

cal thickness. The cortical thickness measures the thickness of

the gray matter shell bounded by the both outer and inner cor-

tical surfaces [9-11]. The first behavioral measure is the emo-

tional face recognition task score. The task score counts the

number of correct responses when judging whether a subject is

viewing an emotional (happy, fear and anger) or neutral face

[12]. The second behavioral measure is the time required to

produce a response. The response time is measured in ms. Each

behaviorial measure was correlated with the cortical thickness

measure at each point on the cortex for the both autistic and

control groups, and a statistical test was performed to determine

the regions of differing correlation pattern between groups.

This study is a continuation of the series of multifaceted stud-

ies in the Waisman laboratory for brain imaging and behavior

characterizing the autistic, structural, functional, and behav-

ioral phenotypes [8,9,12].

Prelimary

Let Y==(Y1,Y2) be two variables of interests and X==(X1, …,

Xp) be a row vector of variables that should be removed in a

data analysis. For instance, we may let Y1 be the cortical thick-

ness, Y2 be the response time, and X1 and X2 be the age and

total surface area respectively. The covariance matrix of (Y,X)′
is denoted by 

(2)

Note »XY is the cross-covariance matrix of X and Y. »YX

and »XX are defined similarly. Then the partial covariance of

Y given X is 

»YY-»YX»XX
-1

»XY==(σij).

The partial correlation ρYi,Yj l X is the correlation between vari-

ables Yi and Yj while removing the effect of variables X and it

is defined as

σijρYi,Yj l X==mmmmmm .
σiiσjj

The conditional notation l is used in defining the partial corre-

lation since the partial correlation is equivalent to conditional

correlation if E(Y lX)==a++BX for some vector a and matrix

B, which is true under the normality of data. This is the formu-

lation we used to compute the partial correlation. If vector X

consists of a single measurement, i.e. X==X1, the partial corre-

lation can be computed from the simple correlation via

The sample partial correlation rY1,Y2 l x is defined similarly by

replacing the covariance with the sample covariance in (2).

If we let ρk be the partial correlation for group k (autism==1,

control==2), for each fixed p∈∂Ω, one may test 

HA
0 : ρk(p)==0  vs.  HA

1 : ρk(p)≠0. (3)

Inference type (3) is useful if only one sample is available or

determining high correlation regions within a group. Assuming

the normality of measurements X and Y, the partial correlation

r==rYi,Yj l X can be transformed to be distributed as: 

the t distribution with n-2 degrees of freedom. This test sta-

tistic can be used for testing a one-sample inference type (3).

The MATLAB codes for computing the partial correlation

are given here. Let rho be the sample partial correlation bet-

ween cortical thickness (thick) and response time (time) while

removing the effect of age (age) and cortical area (area) differ-

ence in a group at a single vertex. For n subjects in the group,

all variables are row vectors of size 1×n. The MATLAB codes

for computing rho is as follows: 

x==[age; area];

y==[thick; time];

a==cov([x;y]′); 
b==a(1:2,1:2)-a(1:2,3:4)*inv(a(3:4,3:4))*a(3:4,1:2); 

rho==b(1,2)/sqrt (b(1,1)*b(2,2)); 

Here x and y are 2×n matrices, and the covariance matrix a

is the size 4×4.

Surface-based Data Smoothing

To increase the signal-to-noise ratio, we applied a surface

based smoothing method called heat kernel smoothing to the

T=mmmmmmm : tn-2,r   n-2

1-r2

ρY1,Y2 l X=mmmmmmmmmmmmmmmmmm .
ρY1,Y2
-ρY1,XρY2,X

(1-ρY1,X
)(1-ρY2,X

)2 2
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cortical thickness measures. The implementation detail and its

statistical properties can be found in [9]. This is an improved

formulation over the previously developed diffusion smooth-

ing [11,13,14]. In [13] and [14], smoothing is done by solving

an isotropic heat equation via the combination of the least

squares estimation of the Laplace-Beltrami operator and the

finite difference method (FDM). In [11], the heat equation is

solved using the finite element method (FEM) and a similar

FDM. The problem with these approaches to data smoothing

is the complexity of setting up the FEM and making the FDM

converge. Our heat kernel smoothing avoids all these prob-

lems.

We assume the following linear model on thickness mea-

sure Y: 

Y(p)==θ(p)++ε(p), 

where θ(p) is the unknown mean thickness function and ε(p)

is a zero-mean random field, possibly a Gaussian white noise

process. Heat kernel smoothing of cortical thickness Y is then

defined as the convolution: 

Kσ*Y(p)==
∂Ω

Kσ(p,q)Y(q)dq, (4)

where Kσ is the heat kernel that generalizes the Gaussian ker-

nel in a Euclidan space to a curved manifold. The bandwidth

σ controls the amount of smoothing. Given the Laplace-Beltra-

mi operator Δψ==λψ on ∂Ω, we can order eigenvalues 0==λ0

‹λ1‹λ2‹… and corresponding eigenfunctions ψ0, ψ1, …. It

can be written in terms of basis function expansion: 

∞
Kσ*Y(p)==»Yje

-λjσψj(p), 
j==0

where 

Yj==
∂Ω

ψj(q)Y(q)dq.

The heat kernel estimator of unknown functional signal θ(p)

is then 

θ̂σ(p)==Kσ*Y(p).

The heat kernel estimator becomes unbiased as σ→ 0, i.e. 

lim Eθ̂σ(p)==θ (p).
σ→0

As σ gets larger, the bias increases. However the total bias over

all cortex is always zero, i.e.
∂Ω

[θ(p)-Eθ̂σ(p)] dp==0. Further 

∂Ω
Y(q)dq

lim θ̂σ(p)==mmmmmmmmmm ,
σ→∞

∂Ω
dq

the sample mean over the whole cortex ∂Ω. Other properties

of the heat kernel smoothing can be found in [9]. The heat ker-

nel smoothing has been implemented in MATLAB and it can

be found in the web www.stat.wisc.edu/mchung/softwares/hk/

hk.html.

The approximate relationship between the full width at half

maximum (FWHM) and the bandwidth is 

FWHM== 8ln2σ.

In this study, the thickness measurements were smoothed with

30 mm FWHM. This is the same amount of smoothing previ-

ously used in [9] for detecting cortical thinning in autism.

Statistical Inference

In our study, the main interest is testing the equality of cor-

relations between groups. So at each fixed point p∈∂Ω, we

are interested in testing 

H0
B : ρ1(p)==ρ2(p)  vs.  H1

B : ρ1(p)≠ρ2(p). (5)

For two sample inference type (5), one approach is based on

the Fisher transform [1,15,16], which shows the asymptotic

normality: 

1      1++rk          1     1++ρk         1
rk→ arctanh(rk)==m ln ( mmmmm ) : N (m ln ( mmmmm ), mmmmm ) .

2      1-rk          2      1-ρk     nk-3

The transform can be viewed as a variance stabilizing normali-

zation process. Based on the Fisher transform, the test statistic

under H0
B is then given by: 

(6)

A slightly different formulation for testing the equality of cor-

relations can be found in [17]. We further normalized the field

W(p) with mean μ(p)==EW(p) and variance S2(p)==EW2(p)-

μ2(p) by 

W(p)-μ(p)
Z(p)==mmmmmmmmmm . 

S(p)

W(p)=mmmmmmmmmmmmmmm

mmmmm+mmmmm
n1-3 n2-3

1 12

ln  mmmm∙mmmm(                     )1-r1      1+r2

1+r1      1-r2

:  N(0,1).



μ and S2 are estimated from random permutations. We can take

the field Z to be Gaussian with zero mean and unit variance.

To determine the null distribution of the test statistic, we per-

mute two samples across the groups. For n1 subjects for group

1 and n2 subjects for group 2, we combine them together, do a

random permutation, and partition the result into two groups

with the same number of subjects. For this study, we generat-

ed 200 random permutations out of (n1++n2)! possible permu-

tations. Then for each permutation, we computed the statistic

and based on the empirical distribution of the statistic, we esti-

mated μ and S2.

Using Z as the test statistic, we tested: 

H0 : ρ1(p)==ρ2(p)  for all  p∈∂Ω  vs. 

H1 : ρ1(p)≠ρ2(p)  for some p∈∂Ω.

The null hypothesis H0 is the intersection of collection of hypo-

theses 

where H0
B is the null hypothesis given in (5). The type I error

α for testing one sided test is then given by: 

for some h. The distribution of supp∈∂ΩZ(p) is asymptotically

given as: 

2

P ( sup Z(p)¤h )�»φd(∂Ω)ρd(h), (7)
p∈∂Ω d==0

where φd are the d-dimensional Minkowski functionals of ∂Ω
and ρd are the d-dimensional Euler characteristic (EC) density

of correlation field [18,19]. The Minkowski functionals are φ0

==2, φ1==0, φ2==area(∂Ω)/2==49,616 mm2, the half area of the

template cortex ∂Ω. The EC densities are:

1
ρ0(h)==

h

∞
mmmmme-u2/2 du

2π

(4 ln 2)1/2                              1
ρ1(h)==mmmmmmmmme-h2/2==mmmmmmme-h2/2

2πFWHM             2 2 πσ

1                             4 ln 2
ρ2(h)==mmmmmmmhe-h2/2==mmmmmmmmmmmmhe-h2/2 .

(8π)3/2σ2                      (2π)3/2FWHM2

The resulting P-value maps are found in Figs. 1 and 2.

Application

We applied our methodology to detect the regions of abnor-

mal brain-behavior correlates in autistic cortical regions.

Subjects. 14 high functioning autistic (HFA) and 12 normal

control (NC) subjects used in this study were screened to be

right-handed males. Age distributions for HFA and NC are

15.93±4.71 and 17.08±2.78 respectively. This is the same

data set used in previous studies [8,9,12].

Magnetic resonance images. High resolution anatomical

magnetic resonance images (MRI) were obtained using a 3-

Tesla GE SIGNA (General Electric Medical Systems, Wauke-

sha, WI) scanner with a quadrature head RF coil. A three-di-

mensional, spoiled gradient-echo (SPGR) pulse sequence was

used to generate T1-weighted images. The imaging parameters

were TR/TE==21/8 ms, flip angle==30�, 240 mm field of view,

256×192 in-plane acquisition matrix (interpolated on the scan-

ner to 256×256), and 128 axial slices (1.2 mm thick) covering

the whole brain.

Cortical thickness. Following image processing steps des-

cribed in [8,9] both the outer and inner cortical surfaces were

extracted for each subject via deformable surface algorithm

[10]. Surface normalization is performed by minimizing an

objective function that measures the global fit of two surfaces

while maximizing the smoothness of the deformation in such

a way that the pattern of gyral ridges are matched smoothly

[9,20]. Afterward cortical thickness was computed for each

subject [9,11]. Heat kernel smoothing was applied to the cor-

tical thickness measures with a relatively large 30 mm FWHM

as described in a previous section.

Facial emotion discrimination task. The subjects were asked

to decide whether a picture of a human face was either emo-

tional (happiness, fear or anger) or neutral (showing no obvious

emotion) by pressing one of two buttons. The faces were black

and white photographs taken from the Karolinska Directed

Emotional Faces set [12,21]. The task scores (maximum 40)

for HFA and NC are 27.14±15.34 and 39.42±0.79 respec-

tively, and the response time (ms) for HFA and NC are 1329.8

±206.7 and 1110.9±182.3 and respectively. A more detailed

description about the task can be found in [12].

Partial correlation maps. The simple correlations between

cortical thickness and both task score and response time were

α=P(
p∈∂Ω p∈∂Ω

p∈∂Ω p∈∂Ω

∪ ∩{Z(p)¤h})=1-P(                        ) {Z(p)‹h}

Z(p)‹h)=P(  sup  Z(p)¤h)=1-P(  sup

H0=∩
p∈∂Ω

H0
B(p),
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Fig. 1. Map of facial emotion discrimination task score correlated with thickness. The first raw is the simple correlation. The second and third rows
are the partial correlation. The partial correlation tend to boost over all correlation values. The fourth row is the partial correlation difference bet-
ween the two groups (autism-control). The last row shows the final Z-statistic map showing statistically significant correlation difference (P-value
0.03 for z==3.8, and 0.002 for z==-4.5).
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Fig. 2. Map of response time correlated with thickness. The first row shows the simple correlation. The second and third rows are the partial cor-
relation removing the effect of age and cortical area differences. The fourth row shows the partial correlation difference. We are interested in test-
ing the significance of this difference. The last row shows the final Z-statistic map showing statistically significant correlation difference(corrected
P-value 0.04 for z==-3.7 and 0.001 for z==4.6).
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computed for each group and mapped onto the template cortex

(Figs. 1 and 2, first rows). The partial correlations were also

computed while removing the effect of age and global area

difference. (Figs. 1 and 2, second and third rows). Comparing

the partial correlation maps to the simple correlation maps, we

see different patterns indicating that it is necessary to account

for the age and the area terms for proper correlation analysis.

The partial correlation difference maps (autism-control) show

the regions of maximum correlation difference (Figs. 1 and 2,

fourth rows). To access the statistical significance of the cor-

relation difference, the Fisher transformation and the normali-

zation steps were used resulting in the Z-statistic maps (Figs. 1

and 2, last rows).

Group difference between the autistic and control subjects

were identified using brain-behavior correlations of task score

and response time. Brain-behavior partial correlations of task

score and cortical thickness identified group differences in

mainly two cortical regions: right angular gyrus (area 39) and

the left Broca’s area (area 44). The area 39 shows the positive

correlation for the control subjects while it shows the negative

correlation for the autistic subjects (corrected P-value 0.002,

z-value -4.5). The area 44 shows the negative correlation for

the control subjects while it shows the positive correlation for

the autistic subjects (corrected P-value of 0.03, z-value 3.8).

For time-thickness correlation, we found more statistically

significant regions of difference that are consistent with pre-

vious studies. In general, the spatial patterns of behavioral res-

ponse time and thickness correlation shows more negative cor-

relation (blue) than positive correlation (red) in the control sub-

jects and the pattern is opposite for the autistic subjects (Fig. 2

second row). Faster response time in the control subject are

related to a thicker right ventral and dorsal prefrontal cortex

while they are related to thinning in the same area in the autis-

tic subject (corrected P-value 0.001, z-value 4.6). We found

correlation difference in the left superior temporal gyrus and

superior temporal sulcus (corrected P-value 0.04, z-value -3.7)

(Fig. 2 last row). The autistic subjects show an aberrant spatial

pattern of behavioral-thickness correlation in the right fronto-

polar region (BA10), which shows a direct correlation between

response time duration and cortical thickness not seen in the

control subjects. We also found that slower responses in con-

trols are related to a thinner right inferior orbital frontal cortex

but slower responses in the autistic subject are independent of

right orbital prefrontal cortical thickness (corrected P-value

0.001, z-value 4.6).

Discussion

In this study, group difference between the autistic and the

control subjects were identified using brain-behavior correla-

tions between cortical thickness and both task score and res-

ponse time. The partial correlation mapping strategy is shown

to be an effective way of visualizing and localizing the cortical

regions of high correlation while removing the effect of unwant-

ed covariates such as age, gender and global brain size differ-

ences. Our approach would be a very useful analysis frame-

work for many other types of future brain-behavior correlate

studies.

Our findings are consistent with previous functional and

anatomical studies. The score-thickness correlation difference

found in the left area 44 is interesting since this is the area

shown to have reduced bilateral connectivity in autism [22].

Since area 44 is thought to contain mirror neurons considered

part of the dorsal stream, altered brain-behavior correlations

reflect the influence of cortical thickness on perception-action

function [22,23].

The ventral prefrontal plays a role in the learning of tasks in

which subjects must learn to associate visual cues and respons-

es [24,25]. So our finding of abnormal correlation between the

response time and thickness in the right ventral prefrontal cor-

tex is not surprising.

Our previous study identified reduced cortical thickness in

the right inferior orbital prefrontal cortex, the left superior tem-

poral sulcus and the left occipito-temporal gyrus in the autistic

subjects relative to the control group [9]. When paired with

results from our current study, areas in which cortical thick-

ness is reduced in autism predict differences in task response.

Thicker cortex in the left superior temporal gyrus and the supe-

rior temporal sulcus predict faster response times in the control

subjects, whereas thicker cortex in the autistic subject are asso-

ciated with prolonged response times in these regions. This

result may be related to autistic dysfunction in the superior

temporal gyrus and superior temporal sulcus, regions known

to be involved in social processing [26,27] and eye gaze per-

ception [28]. Slower responses in controls are related to a thin-

ner right inferior orbital frontal cortex but slower responses in

the autistic subject are independent of right orbital prefrontal

cortical thickness. This may suggest a floor effect in which

autistic cortical thickness is too thin to predict changes in beha-

vioral response time.

The general spatial patterns of behavioral response time-



thickness correlations distributed across the dorsal surface are

positive in the autistic subjects, whereas negative correlations

are shown for the control subjects in these regions. Autistics

also show an aberrant spatial pattern of behavioral-thickness

correlation in the right frontopolar region (BA10), which shows

a direct correlation between response time duration and corti-

cal thickness not seen in controls. One possible mechanism

for these results is that increased cortical thickness may pro-

duce alterations in intra cortical connectivity resulting in a mis-

allocation of cortical functional resources. A recent study sug-

gesting that alterations are noted along the thickness of autistic

cortex further complicates the impact that alterations in autistic

cortical anatomy may have on behavior. Based on cellular

studies, autistic subjects have an increased number of smaller

mini-columns, the basic functional unit of cortex [29], that are

less compact relative to control subjects in prefrontal cortex

and in temporal regions. This anatomy may increase intracor-

tical signalling, reduce lateral inhibition, and cause terminal

fields of subcortical afferents to synapse on multiple mini-col-

umns unintentionally enhancing cortical noise in these regions

[30]. Our results add to this literature by identifying regions in

which cortical thickness alterations predict certain autistic be-

haviors.
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