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Abstract

In this paper, we explore hidden persistent homological structures in sparse re-
gressions. Sparse regressions are usually parameterized by tuning parameters that
determine the sparsity of solutions. By treating the tuning parameters as addi-
tional dimension, we can have multi-scale representations. We can show there
exist hidden persistent homological structures in these dimensions. By exploiting
the hidden topological structures further, it is possible to completely bypass the
computational bottlenecks that usually occur in solving the sparse regressions.

1 Introduction

A persistent data structure is one in which the state of the structure is preserved when it is modified
[1]. Within the persistent homology framework, it usually refers to having the nested subset data
structure under filtration [2, 3].

This paper is motivated by a simple question of if sparse data recovery techniques such as com-
pressed sensing and sparse likelihood methods can possibly have such persistent homological data
structures [4]. The answer is a resounding yes for two sparse representation techniques: sparse
correlations and sparse likelihood.

Sparse representation A is usually parameterized by a tuning parameter λ that controls the sparsity
of the representation. Conventionally increasing λ makes the representation more sparse. So the
representation A(λ) can be viewed as a function of λ. Since A gets more sparse as λ increases, it
might be possible to construct a filtration on the tuning parameter such that

A(λ1) ⊃ A(λ2) ⊃ A(λ3) ⊃ · · · (1)

for λ1 ≤ λ2 ≤ · · · . In this paper, we investigate this particular persistency which is often studied in
persistent homology and topological data analysis [3].

2 Methods

Through the paper, we use the following notations. Let Xn×p = (xij) be the data matrix consisting
of n observations in p nodes. Its p-dimensional row vector yi = (xi1, · · · , xip)′ is assumed to
follow multivariate normal with mean 0 and covariance Σ = (σkl). The n-dimensional column
vector at each node i is denoted as xi = (x1i, · · · , xni)′. When n� p, this becomes a significantly
underdetermined system. In this situation, Σ or its inverse are usually estimated via compressed
sensing or sparse likelihood type of L1-norm penalty methods. [4, 5].

Sparse Correlation Matrix. To simplify the argument, we will further assume σij = 1. The condi-
tion of zero mean and unit variance is achieved by centering and normalizing data such that x′ixi = 1
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and
∑n
i=1 xij = 0. Consider the correlation matrix Γ = (γjk) which can be estimated via linear

regression

xj = αjkxk + εj . (2)

The least squares estimation (LSE) of γjk is given by γ̂jk = α̂jk = x′jxk, which is the sample
correlations. The sparse version of (2) is the minimization of

F (γjk) =
1
2

p∑
j=1

∑
k 6=j

‖ xj − γjkxk ‖22 +λ
p∑

j,k=1

|γjk|. (3)

This is the compressed sensing type of optimization problem. By increasing λ, the estimated corre-
lation matrix Γ̂(λ) becomes more sparse. The minimum of F is then achieved when

0 =
∂F

∂γjk
= γjk − x′jxk ± λ.

The sign of λ depends on the sign of γjk. Then for λ ≥ 0, the sparse correlation estimation is given
by

γ̂jk(λ) =


x′jxk − λ if x′jxk > λ

x′jxk + λ if x′jxk < −λ
0 otherwise

. (4)

Due to this simple expression, there is no need to optimize (3) numerically using the coordinate
descent learning or the active-set algorithm often used in compressed sensing.

Using the sparse solution (4), let us show how to construct a persistent homological structure. To
simplify the problem, let just assume λ ≥ 0. Let A(λ) = (aij) be the adjacency matrix given by

ajk(λ) =
{

1 if γ̂jk 6= 0;
0 otherwise.

This is equivalent to the adjacency matrix B = (bjk) defined as

bjk(λ) =
{

1 if |x′jxk| > λ;
0 otherwise.

(5)

The adjacency matrix B is simply obtained by thresholding the sample correlations. Then the adja-
cency matrices A and B induce a graph G(λ) consisting of κ(λ) disconnected components

G(λ) =
κ(λ)⋃
l=1

Gl with Gl = (Vl(λ), El(λ)),

where the whole node and edge sets are partitioned into Vl and El respectively. No two nodes
between the different partitions are connected. From (5), it is trivial to show the partitioned graphs
are nested within each partition such that

Gl(λ1) ⊃ Gl(λ2) ⊃ Gl(λ3) ⊃ · · ·
for λ1 ≤ λ2 ≤ λ3. Hence we have the persistent homological structure induced from the com-
pressed sensing type of the form (3). Any computation involving (3) can be done without optimiza-
tion in O(p2 ln p) time by thresholding the sorted sample correlations sequentially. A similar but
more restricted persistent homological structure can be also found in the following spare-likelihood
method.

Sparse Covariance Matrix. Neglecting constant terms, the log-likelihood function L of yi is given
by

L(Σ−1) = log det Σ−1 − 1
n

n∑
i=1

y′iΣ
−1yi (6)

The maximum likelihood estimate (MLE) of Σ is trivially given by S = 1
n

∑n
i= yiy′i = 1

nX
′X,

which is the sample covariance matrix.
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Figure 1: Left: Adjacency matrices obtained through GLASSO with increasing λ values. The
persistent homological structure is self-evident. Right: A block diagonal matrix D with κ number
of blocks such thatD = PAP−1 with a permutation matrix P . D also shows the persistent structure.

The sparse version of the log-likelihood is given by

L(Σ−1) = log det Σ−1 − tr
(
Σ−1S

)
− λ‖Σ−1‖. (7)

The maximization of (7) is solve by the graphical-lasso (GLASSO) algorithm [5, 6].

By increasing λ, the estimated inverse covariance matrix Σ̂−1(λ) = (σ̂ij(λ)) becomes more sparse.

The construction of the persistent homological structure out of Σ̂−1(λ) is similar to the sparse
correlation case. Let A(λ) = (aij) be given by

aij(λ) =

{
1 if σ̂ij 6= 0;
0 otherwise.

Then the adjacency matrix A induces a graph G(λ) consisting of κ(λ) disconnected components
G(λ) =

⋃κ(λ)
l=1 (Vl(λ), Al(λ)). Then it can be shown that the partitioned node sets are nested within

each partition such that

Vl(λ1) ⊃ Vl(λ2) ⊃ Vl(λ3) ⊃ · · · (8)

for λ1 ≤ λ2 ≤ λ3 [6, 7]. The construction of the persistent structure (8) is fairly time consuming
since we have to solve the sequence of GLASSO. However, it can be shown that the partitioned node
sets Vl can be obtained by simply thresholding of the sample covariance S = (sij) [7]. Let us define
a new adjacency matrix B(λ) = (bij) as

bij(λ) =
{

1 if |ŝij | > λ;
0 otherwise.

The adjacency matrix B similarly induces the partitioned graph G(λ) =
⋃κ(λ)
l=1 (Wl(λ), Bl(λ)). It is

trivial to see
Wl(λ1) ⊃Wl(λ2) ⊃Wl(λ3) ⊃ · · ·

for λ1 ≤ λ2 ≤ λ3. It can be further shown that Vl = Wl. By the simple thresholding the sample
covariance matrix, it is possible to construct the the persistent structure (8) in O(p2 ln p) time again
without the computational bottleneck associated with GLASSO. However, in this construction, the
edge sets may not exhibit nestedness.

3 Experimental Results

We illustrate our methods with two examples. In Figure 1, we randomly simulated the data ma-
trix X5×10 from the standard normal distribution. The sample covariance matrix is then feed into
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Figure 2: Jocobian determinant of deformation field are measured at 548 nodes along the human
brain surface. The barcodes of the filtrations on the sample correlations and covariances show huge
group separation between normal controls and post-institutionalized (PI) children.

GLASSO with different filtration values and the induced adjacency matrices show the nestedness.
Theoretically only the partitioned node sets are expected to exhibit the nestedness.

Figure 2 shows the real world example based on the 3 Tesla magnetic resonance images (MRI) of
23 maltreated children who have been post-institutionalized (PI) in orphanages but later adopted
to the families in US and age-matched 31 normal control subjects. The Jacobian determinants of
warping individual images to the template were computed at 548 positions along the white matter
brain surface [8]. The nested node sets Vl are constructed by simple thresholding on correlations and
covariances. For 547 level of filtrations, the sequence of GLASSO would take more than 54 hours
in a laptop (6min. per GLASSO). But it took less than 1 min using the simple thresholding method
to obtain the barcodes.
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