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Abstract. We present novel multivariate tensor-based morphometry
(TBM) for characterizing white matter abnormalities. Traditionally TBM
is used in quantifying tissue volume changes in a massive univariate fash-
ion. At each voxel, the Jacobian determinant obtained from TBM is used
as the response variable in a general linear model (GLM) and a test
statistic is constructed. However, this obvious approach cannot be used
in testing, for instance, if the change in one voxel is related to other
voxels. To address this limitation of univariate-TBM, we propose a novel
multivariate framework for more complex relational hypotheses across
brain regions. To develop multivariate-TBM, it is necessary to regularize
ill-conditioned covariance matrix by incorporating sparse penalty. Unfor-
tunately, most sparse models like compressed sensing, sparse likelihood
and LASSO cause a serious computational bottleneck. The computa-
tional bottleneck can be bypassed by exploiting hidden persistent struc-
tures in the sparse models. The proposed methods are applied to quantify
abnormal white matter in maltreated children to show multivariate-TBM
combined with persistent homology can extract additional information
that cannot be obtained in univariate-TBM.

1 Introduction

Tensor-based morphometry (TBM) uses the spatial derivatives of deformation
fields obtained during nonlinear image registration [3,4,27,8]. The morphological
tensor maps are subsequently computed and used to quantify variations in high
order morphometric changes at each voxel. From these tensor maps, statistical
parametric maps are created for a group of subjects in the 3D whole brain
volume, on the 2D cortical surface [26,2,20,32] or on the surface of the brain
substructures such as the hippocampus and amygdala [30,31].

Previous TBM analyses have been massively univariate in that response vari-
ables are fitted using a linear model at each voxel producing massive number
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Fig. 1: Left, Middle: T -statistic map of group differences (PI-controls) on Jaco-
bian determinants. Red regions above 4.86 are considered as statistically signifi-
cant at 0.05 (corrected). Right: 548 uniformly sampled nodes where multivariate-
TBM will be performed. The nodes are sparsely sampled in the template to
guarantee there is no spurious high correlation due to proximity between nodes.

of test statistics (Figure 1). However, univariate-TBM is ill-suited for testing
more complex hypotheses about multiple anatomical regions. For example, the
univariate-TBM cannot answer how the volume increase in one voxel is related to
other voxels. To address this type of more complex relational hypothesis across
different brain regions, multivariate-TBM is needed.

Motivated by the limitation of traditional univariate-TBM, we present a novel
multivariate framework for testing more complex relational hypotheses for mul-
tiple brain regions. We propose to correlate the Jacobian determinant across
different voxels and quantify how the volume change in one voxel is correlated
to the volume changes in other voxels. However, the direct application of exist-
ing multivariate statistical methods exhibits serious defects in applying to the
whole brain regions due to the small-n large-p problem [11,23,29]. Specifically,
the number of voxels p are substantially larger than the number of subjects
n so the often used maximum likelihood estimation of the covariance matrix
shows the rank deficiency and it is no longer positive definite. In turn, the esti-
mated correlation matrix is not considered as a good approximation to the true
correlation matrix. The small-n large-p problem can be solved by regularizing
the ill-conditioned covariance matrix by sparse regularization terms. Unfortu-
nately, many sparse regression frameworks such as compressed sensing, sparse
likelihood and LASSO (least absolute shrinkage and selection operator) cause a
serious computational bottleneck when trying to apply the methods to the whole
brain.

Sparse model A is usually parameterized by a tuning parameter λ that con-
trols the sparsity of the representation. So the sparse model A(λ) can be viewed
as a function of λ. Increasing the sparse parameter λ makes the representation
more sparse. To overcome the computational bottleneck in obtaining sparse so-
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lutions, we propose to identify the persistent homological structures in A(λ) for
reducing computational complexity. Within the persistent homology framework,
A(λ) is persistent if it has the nested subset structure under changes in λ value
[19,9,13]. Then by exploiting the hidden persistent homology in A(λ), we will
show that it is possible to completely bypass the computational bottlenecks and
speed up the computation by the factor of more than ten-thousand times.

The proposed framework is applied in characterizing abnormal white mat-
ter alterations in children who experienced maltreatment while living in post-
institutional (PI) settings in Eastern Europe and China before being adopted
by families in the US. These children will be compared to age-matched children
who did not experience maltreatment.

The main contributions of the paper are (1) the introduction of new multivariate-
TBM via sparse regression, (2) the identification of hidden persistent homological
structures in sparse regression such as LASSO and sparse likelihood (3) the uti-
lization of persistent structures in reducing computational complexity, and (4)
its novel application to clinical brain imaging data.

2 Why Sparse Models Are Needed for Multivariate-TBM?

Let Jn×p = (Jij) be the data matrix of Jacobian determinant for subject i
at voxel position j. The subscripts denote the dimension of matrices. Assume
there are p voxels of interest and n subjects. Through the paper, we will use the
following notations. The Jacobian determinants of all subjects at the j-th voxel
is denoted as xj = (J1j , · · · , Jnj)′. The Jacobian determinants of all voxels for
the i-th subject is denoted as yi = (Ji1, · · · , Jip)′. xj is the j-th column and yi
is the i-th row of the data matrix J.

If we are interested in quantifying the relationship among Jacobian deter-
minants in every voxel simultaneously, the standard procedure is to set up a
multivariate general linear model (MGLM). MGLM generalizes widely used uni-
variate general linear models (GLM) by incorporating vector valued response and
explanatory variables [1,11,33,34,24]. MGLM assumes yi are independent and
identically distributed multivariate normal with mean vector µ and covariance
Σ. When p = 1, MGLM collapses to GLM and the resulting test statistics be-
comes Hotelling’s T 2 statistic often used for inference on vector data [25,18,12,8].
Note that the covariance matrix of yi is given by

Cov (yi) = Σp×p = (σkl).

For a notational convenience, suppose we center the Jacobian determinant
such that

yi ← yi − Eyi.

Basically we are subtracting the group mean from individual Jacobian maps to
make Eyi = 0. Then neglecting constant terms, the log-likelihood function L of
the data matrix is given by

L(Σ) = log det Σ−1 − 1
n

n∑
i=1

y′iΣ
−1yi (1)
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The maximum likelihood estimate (MLE) of Σ is trivially given as

S =
1
n

n∑
i=

yiy′i =
1
n

J′p×nJn×p, (2)

which is the sample covariance. However, there is a serious defect with MLE (2),
namely the estimated covariance matrix S is ill-conditioned for n < p, which is
true for almost all neuroimaging studies. Note that there are more voxels (p) than
the number of subject (n) in most studies. Hence, MLE does not yield a good
estimation in estimating the covariance matrix [11,23]. This is the main reason
why MGLM was rarely employed over the whole brain and instead massive
univariate approaches are still used in most neuroanatomical studies.

To remedy this small−n and large-p problem, we propose to regularize the
likelihood term with L1-penalty and maximize the sparse likelihood:

L(Σ) = log det Σ−1 − tr
(
Σ−1S

)
− λ‖Σ−1‖, (3)

where ‖ · ‖ is the sum of the absolute values of the elements. The tuning pa-
rameter λ > 0 controls the sparsity of the offdiagonal elements of the covariance
matrix. Then we maximize L over the space of all possible symmetric positive
definite matrices. (3) is a convex problem and we solve it using the graphical-
lasso (GLASSO) algorithm [6,10,16]. By increasing λ, the estimated covariance
matrix becomes more sparse.

3 Hidden Persistent Structures for Sparse Regressions

Since the different choice of sparse parameter λ will produce different results, we
propose to use the collection of Σ(λ) for every possible value of λ for the sub-
sequent statistical inference. This avoids the problem of identifying the optimal
sparse parameter that may not be optimal in practice. Unfortunately, GLASSO
is fairly time consuming algorithm [10,16]. For instance, solving GLASSO for
548 nodes takes about 6 minutes on a desktop computer. To reduce the compu-
tational burden, we propose to identify hidden persistent homological structures
in sparse regression and exploits their features for reducing the computational
complexity [13,19].

Sparse representation A is usually parameterized by a tuning parameter λ
which controls the sparsity of the representation. So the representation A(λ) can
be viewed as a function of λ. Since A(λ) gets more sparse as λ increases, it might
be possible to construct a nested subset structure called filtration on the tuning
parameter such that

A(λ1) ⊃ A(λ2) ⊃ A(λ3) ⊃ · · · (4)

for λ1 ≤ λ2 ≤ · · · . In this section, we will explicitly construct such persistent
structures for the first time.
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3.1 Persistent Structures for Sparse Correlations

To simplify the argument, we assume the measurement vector xj at the j-th
node is centered with zero mean and unit variance. These condition is achieved
by centering and normalizing data such that x′ixi = 1 and

∑n
i=1 xij = 0. Let

Γ = (γjk) be the correlation matrix, where γjk is the correlation between the
nodes j and k. The sample correlation γ̂jk = x′jxk is shown to satisfy

γ̂jk = arg min
γjk

p∑
j=1

∑
k 6=j

‖ xj − γjkxk ‖22 . (5)

The sparse version of (5) is the minimization of

F (γjk) =
1
2

p∑
j=1

∑
k 6=j

‖ xj − γjkxk ‖22 +λ
p∑

j,k=1

|γjk|. (6)

This is the compressed sensing or LASSO type of sparse regression. By increas-
ing λ ≥ 0, the estimated correlation matrix Γ̂(λ) becomes more sparse. The
minimum of F is then achieved when

0 =
∂F

∂γjk
= γjk − x′jxk ± λ.

The sign of λ depends on the sign of γjk. Due to this simple expression, there is
no need to optimize (6) numerically using the coordinate descent learning or the
active-set algorithm often used in compressed sensing [22,10]. Then for λ ≥ 0,
the sparse correlation estimation is given by

γ̂jk(λ) =


x′jxk − λ if x′jxk > λ

x′jxk + λ if x′jxk < −λ
0 otherwise

. (7)

Using the sparse solution (7), we implicitly construct a persistent homological
structure. We will basically build a graph G using spare correlations. Let A(λ) =
(aij) be the adjacency matrix defined as

ajk(λ) =

{
1 if γ̂jk 6= 0;
0 otherwise.

This is equivalent to the adjacency matrix B = (bjk) defined as

bjk(λ) =

{
1 if |x′jxk| > λ;
0 otherwise.

(8)

The adjacency matrix B is simply obtained by thresholding the sample corre-
lations. Then the adjacency matrices A and B induce a identical graph G(λ)
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Fig. 2: Graph G(λ) obtained from sparse correlation for the Jacobian determi-
nant from MRI and fractional anisotropy from DTI at different λ values. G(λ)
forms a filtration over increasing λ. PI shows more dense network at a given fil-
tration value. Since PI is more homogenous in the white matter region, there are
more dense high correlations between nodes. The filtration over the correlation
can be also visualized using a dendrogram [7,19], which also shows more dense
connections for PI.

consisting of κ(λ) number of partitioned subgraphs

G(λ) =
κ(λ)⋃
l=1

Gl(λ) with Gl = {Vl(λ), El(λ)},

where Vl and El are node and edge sets respectively. Note

Gl
⋂
Gm = ∅ for any l 6= m.

and no two nodes between the different partitions are connected. The node and
edge sets are denoted as V(λ) =

⋃κ
l=1 Vl and E(λ) =

⋃κ
l=1El respectively. Then

we have the following theorem:

Theorem 1. The induced graph from the spare correlation form a filtration:

G(λ1) ⊃ G(λ2) ⊃ G(λ3) ⊃ · · · (9)
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for λ1 ≤ λ2 ≤ λ3. Equivalently, the node and edge sets also form filtrations as
well:

V(λ1) ⊃ V(λ2) ⊃ V(λ3) ⊃ · · · , E(λ1) ⊃ E(λ2) ⊃ E(λ3). (10)

The proof can be easily obtained from the definition of adjacency matrix (8).
Hence we have the persistent homological structure induced from the com-

pressed sensing type of the form (6). Figure 2 shows filtrations obtained from
sparse correlations between Jacobian determinants on preselected 548 nodes in
the two groups showing group difference. The sequential network construction
(9) can be done in O(p2) by simply computing pairwise correlations and thresh-
olding the sorted sample correlations sequentially.

3.2 Persistent Structures for Sparse Likelihood

The identification of a persistent homological structure out of the inverse co-
variance Σ̂−1(λ) for sparse-likelihood (3) is similar. Let A(λ) = (aij) be the
adjacency matrix given by

aij(λ) =

{
1 if σ̂ij 6= 0;
0 otherwise.

(11)

The adjacency matrix A induces a graph G(λ) consisting of κ(λ) number of
partitioned subgraphs

G(λ) =
κ(λ)⋃
l=1

Gl(λ) with Gl = {Vl(λ), Al(λ)}.

Motivated by the sparse correlation (8), let us similarly define a corresponding
adjacency matrix B(λ) = (bij) as

bij(λ) =

{
1 if |ŝij | > λ;
0 otherwise.

(12)

The adjacency matrix B similarly induces a graph with τ(λ) disjoint subgraphs:

H(λ) =
τ(λ)⋃
l=1

Hl(λ) with Hl = {Wl(λ), Bl(λ)}.

Unlike the sparse correlation case, G 6= H and we do not have full persistency
on both the node and edge sets. However, the partitioned graphs are shown to
be partially nested in a sense that the node sets exhibits persistency.

Theorem 2. For any λ > 0, the adjacency matrices (11) and (12) induce the
identical vertex partition so that κ(λ) = τ(λ) and Vl(λ) = Wl(λ). Further, the
node sets Vl and Wl form a filtration over the sparse parameter:

Vl(λ1) ⊃ Vl(λ2) ⊃ Vl(λ3) ⊃ · · · (13)
Wl(λ1) ⊃Wl(λ2) ⊃Wl(λ3) ⊃ · · · (14)

for λ1 ≤ λ2 ≤ λ3.
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Fig. 3: Schematic of graph filtration obtained by sparse-likelihood and covariance
thresholding. For λ1 ≤ λ2, we have G(λ2) ⊂ G(λ1) = H(λ1) ⊃ H(λ2). It can
be shown that the node sets of the partitioned subnetworks between the two
filtrations exactly match although the edge sets may not match (Theorem 2).
Exploiting this hidden topological structure, we can drastically speed up network
construction and topological computation.

From (12), it is trivial to see the filtration holds for Wl. The filtration for Vl is
proved in [16]. The equivalence of the node sets Vl = Wl is proved in [21]. Note
that the edge sets may not form a filtration. The construction of the filtration on
the node sets Vl (13) is very time consuming since we have to solve the sequence
of GLASSO. For instance, for 548 node sets and 547 different filtration values, the
whole filtration takes more than 54 hours in a desktop. However, using Theorem
2, we can construct the equivalent filtration on Wl by simply thresholding the
sample covariance in O(p2) without the computational bottleneck encountered
in GLASSO. Theorem 2 is illustrated in Figure 3 with two levels of filtration.

4 Application to Maltreated Children Study

4.1 MRI Data and Univariate-TBM

T1-weighted MRI were collected using a 3T GE SIGNA scanner for 23 children
who experienced maltreatment while living in post-institutional (PI) settings
in Eastern Europe and China before being adopted by families in the US, and
age-matched 31 normal control subjects. The average age for PI is 11.26 ± 1.71
years while that of controls is 11.58 ± 1.61 years. There are 10 boys and 13 girls
in PI, and 18 boys and 13 girls in the control subjects.

A study specific template was constructed using the diffeomorphic shape and
intensity averaging technique through Advanced Normalization Tools (ANTS)
[5]. Image normalization of each individual image to the template was done using
symmetric normalization with cross-correlation as the similarity metric. The
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Fig. 4: The barcodes on the sparse covariance (top) and correlation (bottom) for
Jacobian determinant (left) and FA (right). Unlike covariance, the correlation
shows huge group separation between normal controls and post-institutionalized
(PI) children (p-value < 0.001).

deformation fields are then smoothed out using Guassian kernel with bandwidth
σ = 4mm, which is equivalent to the full width at half maximum (FWHM) of
4mm. Then the Jacobian determinant of the inverse deformation was computed
at each voxel.

The computed Jacobian maps were feed into univariate-GLM at each voxel
for testing the group effect while accounting for nuisance covariates such as age
and gender. Figure 1 shows the significant group difference between PI and con-
trols. Any region above 4.86 or below -4.86 is considered significant at 0.05 (cor-
rected) [34]. However, what the univariate-TBM can not test is the dependency
of Jacobian determinants at two different positions. It is possible that structural
abnormality at one region of the brain might be related to the other regions due
to interregional dependency. For this type of more complex hypothesis, we need
the proposed multivariate approach.

4.2 Multivariate-TBM via Barcodes

Since Jacobian determinants at neighboring voxels are highly correlated, we
uniformly subsampled 548 nodes along the white matter boundary in order not
to have spurious high correlation between two adjacent nodes (Figure 1). The
number of predefined regions is still larger than most region of interest (ROI)
approaches in MRI and DTI [35]. Subsequently we applied the proposed mul-
tivariate framework and obtained sparse correlations and covariance, and con-
structed the filtrations on them. Without solving the optimization problem (8),
the sample correlation and covariance are simply thresholded to obtain the fil-
trations. For 547 levels of filtration, the sequence of GLASSO would take more
than 54 hours in a desktop (6min. per GLASSO). But it took less than 1 min
using the simple thresholding method to construct the filtrations.
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A filtration is usually quantified by the barcode which plots the change of
Betti numbers [9,13,19]. The first Betti number β0(λ) counts the number of
connected components at the filtration value λ. Given barcode βi0(λ) for group
i, we are interested testing the null hypothesis

H0 : β1
0(λ) = β2

0(λ) for all λ ∈ [0, 1]

against the alternative hypothesis

H1 : β1
0(λ) 6= β2

0(λ) for some λ ∈ [0, 1].

Since barcodes are similar to the shape of cumulative probability distribution
functions, Kolmogorov-Smirnov (KS) like test statistic can be used:

T = sup
λ∈[0,1]

∣∣β1
0(λ)− β2

0(λ)
∣∣.

Since each group produces one barcode, we used the Jackknife resampling tech-
nique for inference. For a group with n subjects, one subject is removed and
the remaining n − 1 subjects are used in computing the sparse covariance and
correlations. This process is repeated for each subject to produce n covariance
and correlations. Then the filtration is performed on jackknife resampled covari-
ance and correlations (Figure 4). The Jackknife resampling produces 23 and 31
barcodes respectively for PI and controls. Then KS-like test statistic K is con-
structed between 23× 31 pairs of barcodes. Under the null, K is expected to be
zero. One-sample student T -test is then subsequently performed to show almost
perfect group separation (p-value < 0.001).

5 Discussion: Connection to DTI Study

Severe stress and maltreatment during the early development is found to be
related to structural abnormality in various brain regions [28,17,15,14]. Thus
we expect white matter differences in not only in the Jacobian determinants
but the fractional anisotropy (FA) values in DTI as well. The MRI data in
this study has the corresponding DTI. The DTI acquisition are done in the
same 3T GE SIGNA scanner and the acquisition parameters can be found in
[blinded]. We applied the proposed methods in obtaining the sparse correlation
and covariance maps in the same 548 nodes. The resulting filtration patterns also
show similar pattern of rapid increase in disconnected components (Figure 2 and
4). The Jackknife-based one-sample T -test also shows significant group difference
(p-value < 0.001). This results are due to consistent abnormality observed in
both MRI and DTI modalities. The PI group exhibited stronger white matter
homogeneity and less spatial variability compared to normal controls in both
MRI and DTI measurements.
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