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Abstract

We present a novel kernel regression framework for smoothing scalar sur-
face data using the Laplace-Beltrami eigenfunctions. Starting with the heat
kernel constructed from the eigenfunctions, we formulate a new bivariate
kernel regression framework as a weighted eigenfunction expansion with the
heat kernel as the weights. The new kernel regression is mathematically
equivalent to isotropic heat diffusion, kernel smoothing and recently pop-
ular diffusion wavelets. Unlike many previous partial differential equation
based approaches involving diffusion, our approach represents the solution of
diffusion analytically, reducing numerical inaccuracy and slow convergence.
The numerical implementation is validated on a unit sphere using spherical
harmonics. As an illustration, we have applied the method in characterizing
the localized growth pattern of mandible surfaces obtained in CT images
from subjects between ages 0 and 20 years by regressing the length of dis-
placement vectors with respect to the template surface.

Keywords: Heat kernel smoothing, Laplace-Beltrami eigenfunctions,
Mandible growth, Surface-based morphometry, Diffusion wavelet

1. Introduction

In medical imaging, anatomical surfaces extracted from MRI and CT
are often represented as triangular meshes. The image segmentation and
surface extraction processes themselves are likely to introduce noise to the
mesh coordinates. It is therefore imperative to reduce the mesh noise while
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preserving the geometric details of the anatomical structures for various
applications.

Diffusion equations have been widely used in image processing as a form
of noise reduction starting with Perona and Malik since 1990 (Perona and
Malik, 1990). Numerous techniques have been developed for surface fair-
ing and mesh regularization (Sochen et al., 1998; Malladi and Ravve, 2002;
Tang et al., 1999; Taubin, 2000) and surface data smoothing (Andrade et al.,
2001; Chung et al., 2001; Cachia et al., 2003a,b; Chung et al., 2005; Joshi
et al., 2009). Isotropic heat diffusion on surfaces has been introduced in
brain imaging for subsequent statistical analysis involving the random field
theory that assumes an isotropic covariance function as a noise model (An-
drade et al., 2001; Chung and Taylor, 2004; Cachia et al., 2003a,b). Since
then, isotropic diffusion has been the standard smoothing technique. Such
diffusion approaches use finite element or finite difference schemes that are
known to suffer numerical instability if a sufficiently small step size is not
chosen in the forward Euler scheme.

Iterated kernel smoothing has been another widely used method in ap-
proximately solving diffusion equations on surfaces (Chung et al., 2005; Han
et al., 2006). Iterated kernel smoothing is often used in smoothing anatom-
ical surface data including cortical curvatures (Luders et al., 2006b; Gaser
et al., 2006), cortical thickness (Luders et al., 2006a; Bernal-Rusiel et al.,
2008), hippocampus surface (Shen et al., 2006; Zhu et al., 2007) and magne-
toencephalography (MEG) (Han et al., 2007) and functional-MRI (Hagler Jr.
et al., 2006; Jo et al., 2007) on the brain surface. Due to its simplicity, it
is probably the most widely used form of surface data smoothing in brain
imaging. In iterated kernel smoothing, kernel weights are spatially adapted
to follow the shape of the heat kernel in a discrete fashion along a manifold.
In the tangent space of the manifold, the heat kernel can be approximated
linearly using the Gaussian kernel for small bandwidth. A kernel with large
bandwidth is then constructed by iteratively applying the kernel with small
bandwidth. However, this process compounds the linearization error at each
iteration.

We propose a new kernel regression framework that constructs the heat
kernel analytically using the eigenfunctions of the Laplace-Beltrami (LB) op-
erator, avoiding the need for the linear approximation used by Chung et al.
(2005) and Han et al. (2006). The proposed method represents isotropic heat
diffusion analytically as a series expansion so it avoids the numerical con-
vergence issue associated with solving the diffusion equations numerically
(Andrade et al., 2001; Chung and Taylor, 2004; Joshi et al., 2009). Our
framework is different from other existing diffusion-based smoothing meth-
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ods in that it bypasses the various numerical problems such as numerical
instability, slow convergence, and accumulated linearization error.

Although a few studies have introduced heat kernel in computer vision
and machine learning (Belkin et al., 2006), they mainly use heat kernel
to compute shape descriptors (Sun et al., 2009; Bronstein and Kokkinos,
2010); or to define a multi-scale metric (de Goes et al., 2008). These studies
did not use heat kernel in regressing functional data on manifolds. This
is the first study that uses heat kernel in the form of regression for the
subsequent statistical analysis. There have been significant developments in
kernel methods in the machine learning community (Schölkopf and Smola,
2002; Nilsson et al., 2007; Shawe-Taylor and Cristianini, 2004; Steinke and
Hein, 2008; Yger and Rakotomamonjy, 2011). However, to our knowledge,
heat kernel has never been used in such frameworks. Most kernel methods in
machine learning deal with the linear combination of kernels as a solution to
penalized regressions. On the other hand, our kernel regression framework
does not have a penalized cost function.

Recently, wavelets have been popularized for surface and graph data.
For example, spherical wavelets were used on brain surface data that have
been mapped onto a sphere (Nain et al., 2007; Bernal-Rusiel et al., 2008).
Since wavelet basis has local supports in both space and scale, the wavelet
coefficients from the scale-space decomposition using the spherical wavelets
provides shape features that describe local shape variation at a variety of
scales and spatial locations. However, spherical wavelets require a smooth
mapping from the surface to a unit sphere introducing a serious metric
distortion, which usually compounds subsequent statistical parametric maps
(SPM). Furthermore, such basis functions are only orthonormal for data
defined on the sphere and result in a less parsimonious representation for
data defined on other surfaces compared to the intrinsic LB-eigenfunction
expansion (Seo and Chung, 2011). To remedy the limitations of spherical
wavelets, the diffusion wavelet transform on graph data structures has been
proposed (Antoine et al., 2010; Coifman and Maggioni, 2006; Hammond
et al., 2011; Kim et al., 2012).

The primary methodical contribution of this study is the establishment
of a unified regression framework that combines the diffusion-, kernel- and
wavelet-based methods for scalar data defined on manifolds. Although
diffusion-, kernel- and wavelet-based methods seem to be different method-
ologies, in this paper we establish a unified framework that relates them in
a coherent mathematical fashion by providing detailed theoretical justifica-
tion. This paper extends the work described in Kim et al. (2011), which
introduced heat kernel smoothing to smooth out surface noise in the hip-
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pocampus and amygdala. Although the idea of diffusion wavelet transform
for surface mesh was explored in Kim et al. (2012), the relationship between
the wavelet transform and the proposed kernel regression was not investi-
gated. For the first time, the mathematical equivalence between the two
constructs is explained.

The proposed kernel regression framework is subsequently applied in
characterizing the growth pattern of the mandible surfaces obtained in CT
and identifying the regions of the mandible that show the most significant
localized growth. The length of the displacement vector field is regressed
over the mandible surface to increase the signal to noise ratio and hence
statistical sensitivity. To our knowledge, this is the first growth modeling
of the mandible surface in a continuous fashion without using anatomic
landmarks.

2. Methods

2.1. Isotropic Diffusion on Manifolds

Consider a functional measurement Y (p) observed at each point p on a
compact manifold M⊂ R3. We assume the following linear model on Y :

Y (p) = θ(p) + ε(p), (1)

where θ(p) is the unknown mean signal to be estimated and ε(p) is a zero-
mean Gaussian random field. We may assume further Y ∈ L2(M), the
space of square integrable functions on M with the inner product:

〈f, g〉 =

∫
M
f(p)g(p) dµ(p), (2)

where µ is the Lebesgue measure such that µ(M) is the total area of M.
Functional data such as electroencephalography (EEG), magnetoencephalog-

raphy (MEG) (Han et al., 2007) and functional-MRI (Hagler Jr. et al., 2006;
Jo et al., 2007), and anatomical data such as cortical curvatures (Luders
et al., 2006b; Gaser et al., 2006), cortical thickness (Luders et al., 2006a;
Bernal-Rusiel et al., 2008) and surface coordinates (Chung et al., 2005) can
be considered as possible functional measurements. Functional measure-
ments are expected to be noisy and require filtering to boost signal.

Surface measurements have often been filtered using the isotropic diffu-
sion equation of the form (Andrade et al., 2001; Chung et al., 2001; Cachia
et al., 2003a; Rosenberg, 1997)

∂f

∂σ
= ∆f, f(p, σ = 0) = Y (p), (3)
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Figure 1: Heat kernel shape with bandwidths 0.025 (left), 1.25 (middle) and 5 (right) on
a mandible surface. The level sets of the heat kernel form geodesic circles.

where ∆ is the Laplace-Beltrami operator defined on manifold M. The
diffusion time σ controls the amount of smoothing. It can be shown that
the unique solution of (3) is given by kernel convolution. This can be easily
seen as follows.

A Green’s function or a fundamental solution of the Cauchy problem (3)
is given by the solution of the following equation:

∂f

∂σ
= ∆f, f(p, σ = 0) = δ(p), (4)

where δ is the Dirac delta function. The heat kernel Kσ is a Green’s function
of (4) (Evans, 1998), i.e.

∂Kσ

∂σ
= ∆Kσ, Kσ(p, σ = 0) = δ(p).

Since the differential operators are linear in (4), we can further convolve the
terms with the initial data Y such that

∂

∂σ
(Kσ ∗ Y ) = ∆(Kσ ∗ Y ), Kσ ∗ Y (p, σ = 0) = Y (p),

where

Kσ ∗ Y (p) =

∫
M
Kσ(p, q)Y (q) dµ(q).

Hence Kσ ∗ Y is a solution of (3).

2.2. Diffusion Smoothing

Isotropic diffusion (3) has been numerically solved by various numerical
techniques (Chung, 2001; Andrade et al., 2001; Cachia et al., 2003a,b; Chung
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and Taylor, 2004). For diffusion smoothing, the diffusion equation needs to
be discretized using the cotan formulation (Chung, 2001; Chung and Taylor,
2004; Qiu et al., 2006). Since there are many different cotan formulations,
we followed the formulation first given in Chung (2001). Diffusion equation
(3) is discretized as

∂f

∂σ
= −A−1Cf , (5)

where f = (f(p1, σ), · · · , f(pn, σ))′ is the vector of measurements over all
mesh vertices at time σ. A = (Aij) is the stiffness matrix and C = (Cij) is
the global coefficient matrix, which is the assemblage of individual element
coefficients. The sparse matrices A and C are explicitly given as follows.

Let T−ij and T+
ij denote two triangles sharing the vertex pi and its neigh-

boring vertex pj in a mesh. Let two angles opposite to the edge containing
pi and pj be φij and θij respectively for T+

ij and T−ij . The off-diagonal entries
of the stiffness matrix are

Aij =
1

12

(
|T+
ij |+ |T

−
ij |
)

if pi and pj are adjacent and Aij = 0 otherwise. | · | denotes the area of
a triangle. The diagonal entries are summed as Aii =

∑n
j=1Aij . The off-

diagonal entries of the global coefficient matrix are

Cij = −1

2
(cot θij + cotφij)

if pi and pj are adjacent and Cij = 0 otherwise. The diagonal entries are
similarly given as the sum Cii = −

∑n
j=1Cij .

Ordinary differential equation (5) is then further discretized at each point
using the forward finite difference scheme:

f(pi, σn+1) = f(pi, σn) + (σn+1 − σn)∆̂f(pi, σn), (6)

where ∆̂f(pi, σn) is the estimated Laplacian obtained from the i-th row
of −A−1Cf . For the forward Euler scheme to converge, we need to have
sufficiently small step size ∆σ = σn+1 − σn (Chung, 2001).

2.3. Iterated Kernel Smoothing

The diffusion equation (3) can be approximately solved by iteratively
performing Gaussian kernel smoothing (Chung et al., 2005). In iterated
kernel smoothing, the weights of the kernel are spatially adapted to follow
the shape of heat kernel in discrete fashion along a surface mesh. Heat kernel
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smoothing with large bandwidth can be broken into iterated smoothing with
smaller bandwidths (Chung et al., 2005):

Kmσ ∗ Y = Kσ ∗ · · · ∗Kσ︸ ︷︷ ︸
m times

∗Y. (7)

Then using the parametrix expansion (Rosenberg, 1997; Wang, 1997), we
approximate the heat kernel with small bandwidth locally using the Gaus-
sian kernel:

Kσ(p, q) =
1√
4πσ

exp[−d
2(p, q)

4σ
][1 +O(σ2)], (8)

where d(p, q) is the geodesic distance between p and q. For sufficiently small
bandwidth σ, all the kernel weights are concentrated near the center, so
the first neighbors of a given mesh vertex are sufficient for approximation.
Unfortunately, this approximation is bound to compound error at each ad-
ditional iteration. For numerical implementation, we used the normalized
truncated kernel given by

Wσ(p, qi) =
exp

[
− d2(p,qi)

4σ

]∑r
j=0 exp

[
− d2(p,qj)

4σ

] , (9)

where q1, · · · , qr are r neighboring vertices of p = q0. Denote the truncated
kernel convolution as

Wσ ∗ Y (p) =

r∑
i=0

Wσ(p, qi)Y (qi). (10)

Then, the iterated heat kernel smoothing is defined as

Wmσ ∗ Y (p) = Wσ ∗ · · · ∗Wσ︸ ︷︷ ︸
m times

∗Y (p).

2.4. Heat Kernel Regression

We present a new regression framework for solving the isotropic diffusion
equation (3). Let ∆ be the Laplace-Beltrami operator on M. Solving the
eigenvalue equation

∆ψj = −λψj , (11)

we order eigenvalues
0 = λ0 < λ1 < λ2 < · · · ,
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and corresponding eigenfunctions ψ0, ψ1, ψ2, · · · (Rosenberg, 1997; Chung
et al., 2005; Lévy, 2006; Shi et al., 2009). Then, the eigenfunctions ψj form
an orthonormal basis in L2(M). There is extensive literature on the use of
eigenvalues and eigenfunctions of the Laplace-Beltrami operator in medical
imaging and computer vision (Lévy, 2006; Qiu et al., 2006; Reuter et al.,
2009; Reuter, 2010; Zhang et al., 2007, 2010). The eigenvalues have been
used in caudate shape discriminators (Niethammer et al., 2007). Qiu et al.
used eigenfunctions in constructing splines on cortical surfaces (Qiu et al.,
2006). Reuter used the topological features of eigenfunctions (Reuter, 2010).
Shi et al. used the Reeb graph of the second eigenfunction in shape char-
acterization and landmark detection in cortical and subcortical structures
(Shi et al., 2008, 2009). Lai et al. used the critical points of the second
eigenfunction as anatomical landmarks for colon surfaces (Lai et al., 2010).
Since the direct application of eigenvalues and eigenfunctions as features of
interest is the beyond the scope of the paper, we will not pursue the issue
in detail here.

Using the eigenfunctions, heat kernel Kσ(p, q) is defined as

Kσ(p, q) =
∞∑
j=0

e−λjσψj(p)ψj(q), (12)

where σ is the bandwidth of the kernel. Figure 1 shows examples of a
heat kernel with different bandwidths. Then the heat kernel regression or
smoothing of functional measurement Y is defined as

Kσ ∗ Y (p) =
∞∑
j=0

e−λjσβjψj(p), (13)

where βj = 〈Y, ψj〉 are Fourier coefficients (Chung et al., 2005) (Figure 2).
Kernel smoothing Kσ ∗ Y is taken as the estimate for the unknown mean
signal θ. The degree for truncating the series expansion can be automatically
determined using the forward model selection procedure.

Unlike previous approaches to heat diffusion (Andrade et al., 2001; Chung
and Taylor, 2004; Joshi et al., 2009; Tasdizen et al., 2006), our proposed
method avoids the direct numerical discretization of the diffusion equation.
Instead we discretize the basis functions of the given manifoldM by solving
for the eigensystem (11) and obtain λj and ψj .

2.5. Diffusion Wavelet Transform
We can establish the relationship between kernel regression and recently

popular diffusion wavelets. In fact, it can be shown that the proposed ker-
nel regression is equivalent to the wavelet transform. This mathematical
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Figure 2: Schematic of heat kernel smoothing. Given functional data on a surface, we
compute the eigenfunctions ψj and the Fourier coefficients βj . Then we combine all the
terms and reconstruct the functional signal back.

equivalence eliminates the need for constructing wavelets using a compli-
cated computational machinery as has often been done in previous studies
(Antoine et al., 2010; Hammond et al., 2011; Kim et al., 2012) and offers a
simpler but more unified alternative.

Consider a wavelet basis Wσ,q(p) obtained from a mother wavelet W
with scale and translation parameters σ and q respectively in a Euclidean
space:

Wσ,q(p) =
1

σ
W
(p− q

σ

)
.

Generalizing the idea of scaling a mother wavelet in Euclidean space to a
curved surface is trivial. However, the difficulty arises when one tries to
translate a mother wavelet on a curved surface since it is unclear how to de-
fine translation along the surface. If one tries to modify the existing spherical
wavelet framework to an arbitrary surface (Nain et al., 2007; Bernal-Rusiel
et al., 2008), one immediately encounters the problem of establishing regular
grids on an arbitrary surface. Recent works based on the diffusion wavelets
bypass this problem by taking the bivariate kernel as a mother wavelet (An-
toine et al., 2010; Hammond et al., 2011; Mahadevan and Maggioni, 2006;
Kim et al., 2012).

For some scale function g that satisfies the admissibility conditions, dif-
fusion wavelet Wσ,q(p) at position p and scale σ is given by

Wσ,q(p) =
k∑
j=0

g(λjσ)ψj(p)ψj(q),
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where λj and φj are eigenvalues and eigenfunctions of the Laplace-Beltrami
operator. The wavelet transform is then given by

〈Wσ,q, Y 〉 =

∫
M
Wσ,q(p)Y (p) dµ(p). (14)

If we let g(λjσ) = exp(−λjσ), we have the heat kernel as the wavelet,
i.e.

Wσ,p(q) = Hσ(p, q),

The bandwidth σ of the heat kernel is the scale parameter, while the trans-
lation is done by shifting one argument in the bivariate heat kernel. Subse-
quently, wavelet transform (14) can then be rewritten as

〈Wσ,p, Y 〉 =
k∑
j=0

e−λjσβjψj(q) (15)

with βj = 〈Y, ψj〉. The expression (15) is exactly the finite truncation of heat
kernel regression in (12). Hence, diffusion wavelet analysis can be simply
performed within the proposed heat kernel regression framework without any
additional wavelet machinery. We will therefore not distinguish between the
heat kernel regression and the diffusion wavelet transform.

Although the heat kernel regression is constructed using global basis
functions ψj , surprisingly the kernel regression at each point p coincides
with the wavelet transform at that point. Hence, it also inherits all the
localization property of wavelets at that point. This is clearly demonstrated
in a simulation given in Figure 3, where a step function of value 1 in the
circular band 1/8 < θ < 1/4 (angle from the north pole) and of value 0 out-
side of the band is constructed. Note that on a sphere, the Laplace-Beltrami
operator is the spherical Laplacian and its eigenfunctions are spherical har-
monics Ylm of degree l and order m. Then the step function is reconstructed
using the spherical harmonic series expansion

Y (p) =
78∑
l=0

l∑
m=−l

βlmYlm(p),

where the spherical harmonic coefficients βlm = 〈Y, Ylm〉 are obtained by the
least squares estimation (LSE). On the unit sphere, we used the heat kernel
regression of the form

Y (p) =

78∑
l=0

l∑
m=−l

e−l(l+1)σβlmYlm(p)
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Figure 3: Gibbs phenomenon (ringing artifacts) is visible in the spherical harmonic series
expansion with degree 78 via the least squares estimation (LSE) of the step function
defined on a sphere. In contrast, the heat kernel regression with the same degree and
bandwidth 0.0001 shows less visible artifacts.

with the small bandwidth σ = 0.0001. The spherical harmonic expansion
clearly shows severe ringing artifacts compared to the kernel regression,
which inherits the localization power of wavelets. This is why the Gibbs
phenomenon is not visibly significant.

2.6. Parameter Estimation in Heat Kernel Smoothing

Since the closed form expression for the eigenfunctions of the Laplace-
Beltrami operator on an arbitrary surface is unknown, the eigenfunctions
are numerically computed by discretizing the Laplace-Beltrami operator. To
solve the eigensystem (11), we need to discretize it on mandible triangular
meshes using the cotan formulation (Chung, 2001; Chung and Taylor, 2004;
Shi et al., 2009; Qiu et al., 2006; Lévy, 2006; Reuter et al., 2006, 2009;
Rustamov, 2007; Zhang et al., 2007; Vallet and Lévy, 2008; Wardetzky,
2008).

Among many different cotan formulations used in computer vision and
medical image analysis, we used the formulation given in Chung (2001) and
Qiu et al. (2006). It requires discretizing (11) as the following generalized
eigenvalue problem:

Cψ = λAψ, (16)

where the global coefficient matrix C is the assemblage of individual ele-
ment coefficients and A are the stiffness matrix. We solved (16) using the
Implicitly Restarted Arnoldi Method (Hernandez et al., 2006; Lehoucq et al.,
1998) without consuming large amount of memory and time for sparse en-
tries. Figure 4 shows the first few eigenfunctions for a mandible surface.
The first eigenfunction is trivially given as λ0 = 0 and ψ0 = 1/

√
µ(M)

11



Figure 4: Eigenfunctions of various degrees for a sample mandible surface. The eigenfunc-
tions are projected on the surface smoothed by the proposed heat kernel smoothing with
bandwidth σ = 0.5 and degree k = 132. The smoothed surface is obtained by heat kernel
smoothing applied to the coordinates of the surface mesh with the same parameter while
preserving the topology of mesh. The first eigenfunction is simply ψ0 = 1/

√
µ(M). The

color scale is thresholded for better visualization.

for a closed compact surface. It is possible to have multiple eigenfunctions
corresponding to a single eigenvalue.

Once we obtain the eigenfunctions numerically, we estimate the kernel
regression parameters βj by minimizing the sum of squared residual using
the least squares estimation (LSE):

arg min
β0,··· ,βk

∥∥∥Y (p)−
k∑
j=0

e−λjσβjψj(p)
∥∥∥2. (17)

The least squares method is often used in estimating the coefficients in
spherical harmonic expansion (Shen et al., 2004; Styner et al., 2006; Chung
et al., 2008). Suppose we have n mesh vertices p1, · · · , pn. Let

Y = (Y (p1), · · · , Y (pn))′

be the surface measurements over all n vertices. Denote the j-th eigenfunc-
tion evaluated at n vertices as

Ψj = (ψj(p1), · · · , ψj(pn))′.

By letting σ = 0, (17) achieves the minimum when

Y = Ψβ, (18)
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where Ψ = (Ψ0, · · · ,Ψk) is the matrix of size n×(k+1). The LSE estimation
of coefficients β is then given by

β̂ = (Ψ′Ψ)−1Ψ′Y. (19)

Since it is expected that the number of mesh vertices is substantially lager
than the number of eigenfunctions to be used, Ψ′Ψ is well conditioned and
invertible.

2.7. Random Field Theory

Once we smooth functional data on a surface, we apply the statistical
parametric mapping (SPM) framework for analyzing and visualizing statis-
tical tests performed on the template surface that is often used in struc-
tural neuroimaging studies (Andrade et al., 2001; Lerch and Evans, 2005;
Wang et al., 2010; Worlsey et al., 1995; Yushkevich et al., 2008). Since test
statistics are constructed over all mesh vertices on the mandible, multiple
comparisons need to be accounted for using the random field theory (Taylor
and Worsley, 2007; Worlsey et al., 1995; Worsley et al., 2004). The random
field theory assumes the measurements to be smooth Gaussian random field.
Heat kernel smoothing will make data smoother and more Gaussian and in-
crease the signal-to-noise ratio (Chung et al., 2005). The proposed kernel
smoothing can be naturally integrated into the random field theory based
statistical inference framework (Taylor and Worsley, 2007; Worsley et al.,
2004; Worlsey et al., 1995).

Given linear model (1), we are interested in determining the significance
of θ, i.e.,

H0 : θ(p) = 0 for all p ∈M vs. H1 : θ(p) > 0 for some x ∈M. (20)

Note that any point p0 that gives θ(p0) > 0 is considered as signal. The
hypotheses (20) are an infinite dimensional multiple comparisons problem
for continuously indexed hypotheses over the manifold M. The underlying
group level signal h is estimated using the proposed heat kernel regression.
Subsequently, a test statistic is often given by a T- or F-field Y (p) (Worsley
et al., 2004; Worlsey et al., 1995).

The multiple comparison corrected p-value computation is then given by
the random field theory (Adler, 1981; Cao and Worsley, 2001; Taylor and
Worsley, 2007; Worsley, 2003). For the F -field Y with α and β degrees of
freedom defined on 2D manifolds MF , it is known that

P
(

sup
p∈MF

Y (p) > h
)
≈ µ2(MT )ρ2(h) + µ0(MF )ρ0(h) (21)
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for sufficiently high threshold h. µd(MF ) is the d-th Minkowski functional
of MF and ρd is the d-th Euler characteristic (EC) density of Y . The
Minkowski functionals are simply

µ2(MT ) = area(MT )/2

µ0(MT ) = χ(MT ) = 2.

The EC-density for F -field is then given by

ρ2 =
1

4πσ2
Γ(α+β−22 )

Γ(α2 )Γ(β2 )

(
αh

β

) (α−2)
2
(

1 +
αh

β

)− (α+β−2)
2

[
(β − 1)

αh

β
− (α− 1)

]
ρ0 = 1− P (Fα,β ≤ h),

where P (Fα,β ≤ h) is the cumulative distribution function of F -stat with α
and β degrees of freedom. The second order term µ2(MT )ρ2(h) dominates
the expression (21) and it explicitly has the bandwidth σ of the kernel regres-
sion. Thus incorporating the proposed kernel framework into the random
field theory.

3. Experiments

3.1. CT Image Preprocessing

We applied the proposed smoothing method to CT images of mandible
surfaces obtained from several different models of GE multi-slice helical CT
scanners. The CT scans were acquired directly in the axial plane with 1.25
mm slice thickness, matrix size of 512 × 512 and 15–25 cm field of view
(FOV). Image resolution varied as voxel size ranged from 0.25 mm3 to 0.49
mm3 as determined by the ratio of FOV divided by the matrix. CT scans
were converted to DICOM format and Analyze 8.1 software package (An-
alyzeDirect, Inc., Overland Park, KS) was then used in segmenting binary
mandible structure based on histogram thresholding.

Image acquisition and processing artifacts and partial voluming produce
topological defects such as holes and handles in any medical image. In
mandibles CT images, unwanted cavities, holes and handles in the binary
segmentation mainly result from differences in CT intensity between rela-
tively low density mandible and teeth and more dense cortical bone and the
interior trabecular bone (Andresen et al., 2000; Loubele et al., 2006). In
mandibles, these topological noises can appear in thin or cancellous bone,
such as in the condylar head and posterior palate (Stratemann et al., 2010).
An example is shown in Figure 5, where the tooth cavity forms a bridge
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Figure 5: Topological correction on mandible binary segmentation and surface. Disjointed
tiny speckles of noisy components are removed by labeling the largest connected compo-
nent, and holes and handles are removed by the morphological closing operation. Left:
A slice shows holes and handles in teeth regions. The isosurface has Euler characteristic
χ = 50. Right: After the correction with χ = 2.

over the mandible. If we apply the isosurface extraction on the topologi-
cally defective segmentation results, the resulting surface will have many tiny
handles (Wood et al., 2004; Yotter et al., 2009). These handles complicate
subsequent surface mesh operations such as smoothing and parameteriza-
tion. It is thus necessary to correct the topology by filling the holes and
removing handles. If we correct such topological defects, it is expected that
the resulting isosurface is topologically equivalent to a sphere.

Various topology correction techniques have been proposed in medical
image processing. Rather than attempting to repair the topological de-
fects of the already extracted surfaces (Wood et al., 2004; Yotter et al.,
2009), we performed the topological simplification on the volume represen-
tation directly using morphological operations (Guskov and Wood, 2001;
Van Den Boomgaard and Van Balen, 1992; Yotter et al., 2009). The di-
rect correction on surface meshes can possibly cause surfaces to intersect
each other (Wood et al., 2004). By checking the Euler characteristic, the
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Figure 6: Cavity patching by topological closing operations. Left: Surface model of the
binary volume that simulates a tooth cavity. Middle: The 3D image volume based closing
operation does not properly patch the cavity region. Right: The 2D image slice based
closing operation patches the cavity region properly.

holes were automatically filled up using morphological operations to make
the mandible binary volume topologically equivalent to a solid sphere. All
areas enclosed by the higher density bone included in the mandible defini-
tion are morphed into being in the definition of the mandible object. The
hole-filled images were then converted to surface meshes via the marching
cubes algorithm.

In our fully automated algorithm, we first removed the speckles of noise
components by identifying the largest connected component in the binary
volume. Then we applied the morphological closing operation in each 2D
slice of CT images one by one in all three axes. Recombining the topology-
corrected 2D slices resulted in topologically correct surface meshes (Figure
5). 2D topological closing operations were used mainly due to its perfor-
mance and relatively simpler implementation than 3D topological closing
operations. In 2D topological operations, we only to consider only 8 neigh-
boring voxels in a 2D image slice compared to 26 neighboring voxels in a
3D image volume. There are many large concave regions left out by teeth
and fillings. These regions may not be closed with 3D closing operations
but can be easily patched up with 2D closing operations, which tend to
put more constraints on the underlying topology. Instead of performing a
single 3D closing operation that may not work, we sequentially performed
2D closing operations in each image slice in all the x-, y- and z-directions.
Figure 6 shows a simulated cavity example that was not patched by existing
3D closing operation (Van Den Boomgaard and Van Balen, 1992) but was
easily patched by the sequential application of 2D closing operations. Note
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Figure 7: Plot of the RMSE of iterated kernel smoothing against the proposed heat
kernel regression for coordinates x (middle), y (top) and z (bottom) over the number of
iterations up to 200. For heat kernel regression, σ = 0.5 and k = 132 are used. Iterated
kernel smoothing does not converge to heat diffusion. The right figure shows the squared
difference between the two methods. The difference is mainly localized in high curvature
areas, where the Gaussian kernel used in the iterated kernel smoothing fails to approximate
the heat kernel.

that any 3D object, whose every 2D cross-section is topologically equivalent
to a solid disk, is topologically equivalent to a solid sphere. The problem of
3D topology correction can be thus reduced to a much simpler problem of
2D topology correction of multiple slices.

At the end of the processing, we checked the Euler characteristic of
the resulting surface meshes. Note that for each triangle, there are three
edges. For a closed surface topologically equivalent to a sphere, two adjacent
triangles share the same edge. The total number of edges is thus E = 3F/2.
We checked if the Euler characteristic is simply given by χ = V −F/2 at the
end. All binary volumes produced the topologically correct surfaces without
exception. Figure 5 shows an example of before and after the topology
correction.

3.2. Validation and Performance Analysis of Heat Kernel Smoothing

Here, we compared the performance of the proposed kernel regression
against iterated kernel and diffusion smoothing techniques. The high accu-
racy of the heat kernel construction using LB-eigenfunctions was reported
in Kim et al. (2011).

3.2.1. Comparison against iterated kernel smoothing

The proposed heat kernel regression was compared against the widely
used iterated kernel smoothing framework (Chung et al., 2005; Hagler Jr.
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et al., 2006; Han et al., 2006). The x, y and z surface coordinates are treated
as functional measurements on the original surface and smoothed with both
methods. For the comparison of performance between both smoothing meth-
ods, we calculated the root mean squared errors (RMSE) between them.
The mean of the squared errors is taken over the surface. For the heat
kernel regression, we used the bandwidth σ = 0.5 and eigenfunctions up to
k = 132 degree. For iterated kernel smoothing, we varied the number of
iterations 1 ≤ m ≤ 200 with the correspondingly smaller bandwidth 0.5/m
having the effective bandwidth of 0.5. The performance of the iterated ker-
nel smoothing depended on the number of iterations, as shown in the plot
of RMSE of mesh coordinates over the number of iterations (Figure 7). The
RMSE reached up to 0.5901 and did not decrease even when we increased
the number of iterations. The right image in Figure 7 shows the squared
difference between the two methods. The difference is mainly localized in
high curvature areas, where the Gaussian kernel used in the iterated kernel
smoothing fails to approximate the heat kernel. This comparison quantita-
tively demonstrates the limitation of iterated heat kernel smoothing, which
does not converge to heat diffusion.

3.2.2. Comparison against diffusion smoothing

We further compared the proposed heat kernel regression to diffusion
smoothing widely used in smoothing surface data (Chung et al., 2001; An-
drade et al., 2001; Cachia et al., 2003a,b; Chung and Taylor, 2004). For the
forward Euler scheme (6) to converge, we need to have sufficiently small step
size ∆σ. We investigated the convergence of diffusion smoothing against
heat kernel regression with bandwidths σ = 0.5, 20, 50, 100 and k = 132.
For diffusion smoothing, small fixed step size of ∆σ = 0.025 was used with
m = 20, 800, 2000, 4000 iterations. The diffusion smoothing result was found
to be inaccurate for less than 10 iterations, but it converged quickly to heat
kernel smoothing as the number of iterations m increased, giving the com-
patible results.

Figure 8 shows the result of smoothing surface coordinates with three
different techniques: iterated kernel smoothing (Chung et al., 2005), the pro-
posed kernel regression and diffusion smoothing based on FEM discretiza-
tion (Chung and Taylor, 2004). We replaced the original surface coordinates
with smoothed ones for the final visualization. However, in the actual com-
putation, we did not replace the original surface coordinates for the three
methods. Iterated kernel smoothing compounds the discretization errors
over iterations, so it does not converge to kernel regression and diffusion
smoothing. Diffusion smoothing and heat kernel smoothing share the same
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Figure 8: Smoothed mandible surfaces using three different techniques with the same
bandwidths. They are all expected to be the solution of isotropic diffusion. The x, y
and z surface coordinates are treated as functional measurements on the original surface
and smoothed. The proposed heat kernel smoothing is done with various bandwidths,
σ = 0.5, 20, 50, 100. Iterated kernel smoothing performs iterative kernel smoothing with
heat kernel approximated linearly with Gaussian kernel (Chung et al., 2005). Diffusion
smoothing directly solves the diffusion equation using the same FEM discretization (Chung
and Taylor, 2004). Diffusion smoothing and heat kernel smoothing converge to each other
as the bandwidth increases.

FEM discretization and are expected to converge as the bandwidth increases.

3.3. Simulation Studies

Since there is no known ground truth in the imaging data set we are
using, it is uncertain how the proposed method will perform with the real
data. It is therefore necessary to perform simulation studies with the ground
truths. We performed two simulations with small and large signal-to-noise
ratio (SNR) settings on a T-junction shaped surface (Figure 9). The T-
junction surface was chosen because it was a surface with three different
curvatures: convex, concave and almost flat regions. Note surface smooth-
ing methods perform differently under different curvatures. Three black
signal regions of different sizes were taken as the ground truth at these
regions. 60 independent functional measurements on the T-junction were
simulated as |N(0, γ2)|, the absolute value of normal distribution with mean
0 and variance γ2, at each mesh vertex. Value 1 was then added to the
black regions in 30 of the measurements, which served as group 2, while the
other 30 measurements were taken as group 1. Group 1 had distribution
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Figure 9: Simulation study I on a T-junction shaped surface where three black signal
regions of different sizes are taken as the ground truth. 60 independent functional mea-
surements on the T-junction were simulated as |N(0, 22)| at each mesh vertex. We are only
simulating positive numbers to better reflect the positive measurements used in the study.
Value 1 was added to the black regions in 30 of measurements which served as group 2
while the other 30 measurements were taken as group 1. T-statistics are shown for these
simulation (original) and three techniques with bandwidth 0.5. Heat kernel smoothing
performed the best in detecting the ground truth.

|N(0, γ2)| while group 2 had distribution |N(1, γ2)| in the signal regions.
Larger variance γ2 corresponds to smaller SNR.

In Study I, γ2 = 22 was used to simulate functional measurements with
substantially smaller SNR. Figure 9 shows the simulation results. For iter-
ated kernel and diffusion smoothing, we used bandwidth σ = 0.5 and 100
iterations. For smaller SNR, it is necessary to smooth with larger band-
width, which is determined empirically. For heat kernel smoothing, the
same bandwidth and 1000 eigenfunctions were used. The same number of
eigenfunctions was used through out the study. For all three smoothing
techniques, bandwidth is the main parameter that determines performance.
The results are stable under the perturbation of other parameters. We then
performed the two sample t-test with the random field theory based thresh-
old of 4.90 to detect the group difference at 0.05 level.
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Figure 10: Simulation study II on a T-junction shaped surface with the same ground
truth as simulation study I (Figure 9). 60 independent functional measurements on the
T-junction were simulated as |N(0, 0.52)| at each mesh vertex. Value 1 was added to the
black regions in 30 of the measurements, which served as group 2, while the remaining
30 measurements are taken as group 1. Due to large SNR, the group means show visible
group separations. All the methods detected the signal regions; however, the heat kernel
smoothing and diffusion smoothing techniques were more sensitive at large SNR.

Neither the raw data nor iterated smoothing were able to correctly iden-
tify any signal region. However, heat kernel and diffusion smoothing cor-
rectly identified 94% and 91% of the signal regions respectively. This im-
provement for heat kernel smoothing is significant considering that the error
rate of 5% (α-level of 0.05) is considered as the standard threshold for ac-
cepting or rejecting a hypothesis. In addition heat kernel and diffusion
smoothing incorrectly identified 0.26% and 0.26% of non-signal regions as
signal. Although both methods use the similar FEM discretization schemes,
diffusion smoothing suffers more discretization error. The discretization er-
ror is related to the forward Euler scheme that is often employed in diffusion
smoothing (Chung, 2001; Andrade et al., 2001; Cachia et al., 2003b). For
better accuracy, extremely small time steps are required but this requires a
very large number of iterations, which slows the method drastically. There
might be a more accurate faster discretization scheme but the proposed
method is validated against existing standard methods in the medical imag-
ing literature.

In Study II, γ2 = 0.52 was used to simulate functional measurements
with substantially larger SNR. Due to the large SNR, the group means
showed visible group separations (Figure 10). For iterated kernel and diffu-
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sion smoothing, we used bandwidth σ = 0.1 and 100 iterations. For heat ker-
nel smoothing, the same bandwidth and 1000 eigenfunctions were used. All
the methods detected the signal regions; however, the heat kernel smoothing
and diffusion smoothing techniques were more sensitive at large SNR. All
the methods correctly identified the signal regions with 100% accuracy. The
raw data and iterated kernel smoothing did not incorrectly identified any
non-signal regions as signal. However, due to the blurring effects, heat ker-
nel and diffusion smoothing incorrectly identified 0.9% and 0.8% non-signal
regions as signal, which is negligible. For large SNR setting, all the methods
were reasonably able to detect the correct signal regions with minimal error.

In summary, in larger SNR, all three methods performed well. However,
in substantially smaller SNR, the proposed kernel regression performed best,
closely followed by diffusion smoothing. Neither the raw data nor iterated
kernel smoothing performed well in the low SNR setting.

4. Application: Mandible Growth Analysis

As an illustration of the proposed kernel regression technique, we per-
formed a mandible growth analysis on a CT imaging data set consisting of 77
human subjects between the ages of 0 and 19 years. Subjects were divided
into three age categories: 0 to 6 years (group I, 26 subjects), 7 to 12 years
(group II, 20 subjects), and 13 to 19 years (group III, 31 subjects). The
main biological question of interest is whether there are localized regions
of growth between these different age groups. Mandible surface meshes for
all subjects were constructed through the image acquisition and processing
steps described in the previous section. For surface alignment, diffeomor-
phic surface registration was used to match mandible surfaces across subjects
(Miller and Qiu, 2009; Vaillant et al., 2007; Qiu and Miller, 2008; Yang et al.,
2011).

4.1. Diffeomorphic Surface Registration

We chose the mandible of a 12-year-old subject identified as F155-12-08,
which served as the reference template in previous studies (Seo et al., 2010,
2011), as initial templateMI and aligned the remaining 76 mandibles to the
initial template affinely to remove the overall size variability. Some subject
may have larger mandible than others so it is necessary to remove the global
size differences in localized shape modeling. From the affine transformed in-
dividual mandible surfaces Mj , we performed an additional nonlinear sur-
face registration to the template using the large deformation diffeomorphic
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Figure 11: Left: Mandible F155-12-08, which forms an initial template MI . All other
mandibles are affine registered to F155-12-08. Middle: The superimposition of affine regis-
tered mandibles showing local misalignment. Diffeomorphic registration is then performed
to warp misaligned affine transformed mandibles. Right: The average of deformation with
respect to F155-12-08 provides the final population average template MF where statistical
parametric maps will be constructed.

metric mapping (LDDMM) framework (Miller and Qiu, 2009; Vaillant et al.,
2007; Qiu and Miller, 2008; Yang et al., 2011).

In the LDDMM framework (Miller and Qiu, 2009; Vaillant et al., 2007;
Qiu and Miller, 2008; Yang et al., 2011), given a surface M, the metric
space is constructed as an orbit of M under the group of diffeomorphic
transformations G, i.e. Mj = G · M. The diffeomorphic transformations
(one-to-one, smooth forward and inverse transformation) are introduced as
transformations of the coordinates on the background space Ω ⊂ R3. The
diffeomorphisms φt ∈ G are constructed as a flow of ordinary differential
equations (ODE), where φt, t ∈ [0, 1] follows

φ̇t = vt(φt), φ0 = Id, t ∈ [0, 1], (22)

where Id denotes the identity map and vt are the associated velocity vector
fields. The vector fields vt are constrained to be sufficiently smooth, so that
(22) is integrable and generates diffeomorphic transformations over finite
time. The smoothness is ensured by forcing vt to lie in a smooth vector
field V , which is modeled as a reproducing kernel Hilbert space with linear
operator L associated with norm ‖u‖2V = 〈Lu, u〉2 (Dupuis et al., 1998). The
group of diffeomorphisms G(V ) is then the solutions of (22) with the vector
fields satisfying

∫ 1
0 ‖vt‖V dt <∞.

Given the template surfaceM and an individual surfaceMj , the geodesic
φt, t ∈ [0, 1], which lies in the manifold of diffeomorphisms and connects M
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and Mj , is defined as

φ0 = Id, φ1 · M =Mj .

For our application, we employed the LDDMM approach to estimate the
template among all subjects. The estimated template can be simply com-
puted through averaging the initial velocity across all subjects (Zhong and
Qiu, 2010), which is similar to the unbiased template estimation approach
in Joshi et al. (2004). We then recomputed the displacement fields with re-
spect to the initial template MI . We averaged the deformation fields from
the initial template MI to individual subjects to obtain the final template
MF . Figure 11 shows the initial and final templates. Figure 12 shows the
mean displacement differences between groups I and II (top) and II and III
(bottom). Each row shows the group differences of the displacement: group
II - group I (first row) and group III - group II (second row). The arrows
are the growth direction with arrow length being representative of mean
displacement differences and colors indicating growth length in mm.

4.2. Statistical Analysis

We are interested in determining the significance of the mean displace-
ment differences in Figure 12. Since the length measurement provides a
much easier biological interpretation, we used the length of the displace-
ment vector as a response variable. The random field theory assumes the
measurements to be smooth Gaussian random field. Heat kernel smoothing
on the length measurement will make the length measurement smoother,
more Gaussian and increase the signal-to-noise ratio (Chung et al., 2005).
Heat kernel smoothing is applied with bandwidth σ = 20 using 1000 eigen-
functions on the final template MF . The number of eigenfunctions used
is more than sufficient to guarantee a relative error less than 0.3%. The
heat kernel smoothing of the displacement length is taken as the response
variable. We constructed the F random field testing the length difference
between the age groups I and II, and II and III showing the regions of
accelerated growth (Figure 13).

For comparing the groups I and II, it is based on F -field with 1 and 44
degrees of freedom while for the groups II and III, it is based on F -field with 1
and 49. The multiple comparison corrected F -stat thresholds corresponding
to α = 0.05 and 0.01 levels are respectively 8.00 and 10.52 (group II-I) and
8.00 and 10.67 (group III- II). In the F -statistic map shown in Figure 13,
black and red regions are considered as exhibiting growth spurts at 0.01 and
0.05 levels respectively. Our findings are consistent with previous findings of
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Figure 12: Mandibles were grouped into three age cohorts: group I (ages 0 to 6 years),
group II (ages 7 to 12 years) and group III (ages 13 to 19 years). Each row shows the
mean group differences of the displacement: group II - group I (first row) and group III
- group II (second row). The arrows are the mean displacement differences and colors
indicate their lengths in mm. Longer arrows imply more mean displacement.

simultaneous forward and downward growth (Scott, 1976; Smartt Jr. et al.,
2005; Walker and Kowalski, 1972; Lewis et al., 1982; Seo et al., 2011) and
bilateral growth (Enlow and Hans, 1996).

5. Conclusions

This study presents a novel heat kernel regression framework where the
functional measurements are expanded using the weighted Laplace-Beltrami
eigenfunctions analytically. The weighted eigenfunction expansion is related
to isotropic heat diffusion and the diffusion wavelet transform. The method
was validated on a unit sphere, where the spherical harmonics were the
eigenfunctions. As demonstrated in the validation, the heat kernel regres-
sion provided more accurate results than the other surface-based smoothing
techniques. Although both techniques share the identical FEM discretiza-
tion, kernel regression is a parametric model while diffusion smoothing is
not. The flexibility of the parametric model enabled to establish the math-
ematical equivalence of kernel regression, diffusion smoothing and diffusion
wavelets.
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Figure 13: F -statistic map showing the regions of significant growth as measured by mean
displacement difference between the groups displayed in Figure 12. The top row shows
significant growth between groups I and II ; and bottom row between groups II and III.

The method was subsequently applied to characterize mandible growth.
Based on the significant directions of the growth identified in Figure 12 and
13, we have quantified the regions, direction and extent of growth during
periods in the first two decades of life that contribute towards the overall
downward and forward growth of the mandible that has been described in
the literature. For more comprehensive longitudinal growth modeling, we
are currently securing additional samples.
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