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Abstract

We present a novel kernel regression framework for smoothing scalar sur-
face data using the Laplace-Beltrami eigenfunctions. Starting with the heat
kernel constructed from the eigenfunctions, we formulate a new bivariate
kernel regression framework as a weighted eigenfunction expansion with the
heat kernel as the weights. The new kernel regression is mathematically
equivalent to isotropic heat di↵usion, kernel smoothing and recently pop-
ular di↵usion wavelets. Unlike many previous partial di↵erential equation
based approaches involving di↵usion, our approach represents the solution of
di↵usion analytically reducing numerical inaccuracy and slow convergence.
The numerical implementation is validated on a unit sphere using spherical
harmonics. As an illustration, we have applied the method in characterizing
the localized growth pattern of mandible surfaces obtained in CT images
between ages 0 and 20 by regressing the length of displacement vectors with
respect to the template surface.

Keywords: Heat kernel smoothing, Laplace-Beltrami eigenfunctions,
Mandible growth, Surface-based morphometry, Di↵usion wavelet

1. Introduction

In medical imaging, anatomical surfaces extracted from MRI and CT
are often represented as triangular meshes. Image segmentation and surface
extraction process themselves are likely to introduce noise to the mesh co-
ordinates. It is imperative to reduce the mesh noise while preserving the
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geometric details of the anatomical structures for various applications.
Di↵usion equations have been widely used in image processing as a form

of noise reduction starting with Perona and Malik in 1990 (Perona and
Malik, 1990). Numerous techniques have been developed for surface fairing
and mesh regularization (Sochen et al., 1998; Malladi and Ravve, 2002; Tang
et al., 1999; Taubin, 2000) and surface data smoothing (Andrade et al.,
2001; Chung and Taylor, 2004; Cachia et al., 2003a,b; Chung et al., 2005;
Joshi et al., 2009). Particularly in brain imaging, isotropic heat di↵usion
on surfaces has been introduced for subsequent statistical analysis involving
the random field theory that assumes an isotropic covariance function as a
noise model (Andrade et al., 2001; Chung and Taylor, 2004; Cachia et al.,
2003a,b). Since then, isotropic di↵usion has been mainly used as a standard
smoothing technique. Such di↵usion approaches mainly use finite element
or finite di↵erence schemes that are known to su↵er numerical instability if
a su�ciently small step size is not chosen in the forward Euler scheme.

Iterated kernel smoothing is also a widely used method in approximately
solving di↵usion equations on surfaces (Chung et al., 2005; Han et al., 2006).
Iterated kernel smoothing is often used in smoothing various anatomical sur-
face data: cortical curvatures (Luders et al., 2006b; Gaser et al., 2006), corti-
cal thickness (Luders et al., 2006a; Bernal-Rusiel et al., 2008), hippocampus
surface (Shen et al., 2006; Zhu et al., 2007) and magnetoencephalography
(MEG) (Han et al., 2007) and functional-MRI (Hagler Jr. et al., 2006; Jo
et al., 2007) on the brain surface. Due to its simplicity, it is probably the
most widely used form of surface data smoothing particularly in brain imag-
ing. In iterated kernel smoothing, kernel weights are spatially adapted to
follow the shape of the heat kernel in a discrete fashion along a manifold.
In the tangent space of the manifold, the heat kernel can be approximated
linearly using the Gaussian kernel for small bandwidth. A kernel with large
bandwidth is then constructed iteratively applying the kernel with small
bandwidth. However, this process compounds the linearization error at each
iteration as we demonstrate in this paper.

In this paper, we propose a new kernel regression framework that con-
structs the heat kernel analytically using the eigenfunctions of the Laplace-
Beltrami (LB) operator, avoiding the need for the linear approximation used
in Chung et al. (2005) and Han et al. (2006). The proposed method repre-
sents isotropic heat di↵usion analytically as a series expansion so it avoids
the numerical convergence issues associated with solving the di↵usion equa-
tions numerically (Andrade et al., 2001; Chung and Taylor, 2004; Joshi
et al., 2009). Our framework is di↵erent from other existing di↵usion-based
smoothing methods in that it bypasses the various numerical problems such

2



as numerical instability, slow convergence, and accumulated linearization
error.

Although there have recently been a few studies that introduce heat
kernel in computer vision and machine learning (Belkin et al., 2006), they
mainly use heat kernel to compute shape descriptors (Sun et al., 2009; Bron-
stein and Kokkinos, 2010); or to define a multi-scale metric (de Goes et al.,
2008). These studies did not use heat kernel in regressing functional data
on manifolds. This is the first study that uses heat kernel in the form of re-
gression for the subsequent statistical analysis. There have been significant
developments in kernel methods in machine learning community (Schölkopf
and Smola, 2002; Nilsson et al., 2007; Shawe-Taylor and Cristianini, 2004;
Steinke and Hein, 2008; Yger and Rakotomamonjy, 2011); however, as far
as we know, heat kernel was never used in such frameworks. Furthermore,
most kernel methods in machine learning deal with the linear combination
of kernels as a solution to penalized regressions, which significantly di↵ers
from our kernel regression framework which does not have a penalized cost
function.

Recently, wavelets have been popularized for surface and graph data.
Spherical wavelets have been used on brain surface data that have been
mapped onto a sphere (Nain et al., 2007; Bernal-Rusiel et al., 2008). Since
wavelet basis has local supports in both space and scale, the wavelet co-
e�cients from the scale-space decomposition using the spherical wavelets
provides shape features that describe local shape variation at a variety of
scales and spatial locations. However, spherical wavelets have an intrinsic
problem that requires to establish a smooth mapping from the surface to a
unit sphere. The spherical mapping introduces a serious metric distortion,
which usually compounds subsequent statistical parametric maps (SPM).
Furthermore, such basis functions are only orthonormal for data defined on
the sphere and result in a less parsimonious representation for data defined
on other surfaces compared to the intrinsic LB-eigenfunction expansion (Seo
and Chung, 2011). To remedy the limitations of spherical wavelets, the
di↵usion wavelet transform on graph data structures has been proposed (An-
toine et al., 2010; Coifman and Maggioni, 2006; Hammond et al., 2011; Kim
et al., 2012).

The primary methodical contribution of this study is the establishment
of a unified regression framework that combines the di↵usion-, kernel- and
wavelet-based methods for scalar data defined on manifolds. Although
di↵usion-, kernel- and wavelet-based methods seem to be all di↵erent method-
ologies, we can establish a unified framework that relates all of them in a
coherent mathematical fashion. This paper extends the conference paper
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in Kim et al. (2011), where the heat kernel smoothing was introduced to
smooth out surface noises in the hippocampus and amygdala. We provide
detailed theoretical justification and validation of the proposed unified ker-
nel regression framework. Although the idea of di↵usion wavelet transform
for surface mesh was explored in Kim et al. (2012), the relationship between
the wavelet transform and the proposed kernel regression was not investi-
gated. For the first time, the mathematical equivalence between the two
constructs is explained.

The proposed kernel regression framework is subsequently applied in
characterizing the growth pattern of mandible surfaces obtained in CT and
identifying the regions of mandible that show the most significant localized
growth. The length of the displacement vector field is regressed over the
mandible surface for increasing the signal to noise ratio and hence statistical
sensitivity. To our knowledge, this is the first growth modeling of mandible
surface in a continuous fashion without using anatomic landmarks.

2. Methods

2.1. Isotropic Di↵usion on Manifolds

Consider a functional measurement Y (p) observed at each point p on a
compact manifold M ⇢ R3. We assume the following linear model on Y :

Y (p) = ✓(p) + ✏(p), (1)

where ✓(p) is the unknown mean signal to be estimated and ✏(p) is a zero-
mean Gaussian random field. We may assume further Y 2 L2(M), the
space of square integrable functions on M with the inner product

hf, gi =
Z

M
f(p)g(p) dµ(p), (2)

where µ is the Lebesgue measure such that µ(M) is the total area of M.
Various functional data such as electroencephalography (EEG), magne-

toencephalography (MEG) (Han et al., 2007) and functional-MRI (Hagler Jr.
et al., 2006; Jo et al., 2007), and anatomical data such as cortical curvatures
(Luders et al., 2006b; Gaser et al., 2006), cortical thickness (Luders et al.,
2006a; Bernal-Rusiel et al., 2008) and surface coordinates (Chung et al.,
2005) can be considered as possible functional measurements. Functional
measurements are expected to be noisy and require filtering to boost signal.
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Surface measurements have been often filtered using the isotropic di↵u-
sion equation of the form (Andrade et al., 2001; Chung, 2001; Cachia et al.,
2003a; Rosenberg, 1997):

@f

@�
= �f, f(p,� = 0) = Y (p), (3)

where � is the Laplace-Beltrami operator defined on manifold M. The
di↵usion time � controls the amount of smoothing. It can be shown that
the unique solution of (3) is given by kernel convolution. This can be easily
seen as follows.

A Green’s function or a fundamental solution of the Cauchy problem (3)
is given by the solution of the following equation

@f

@�
= �f, f(p,� = 0) = �(p), (4)

where � is the Dirac delta function. The heat kernel K� is a Green’s function
of (4) (Evans, 1998), i.e.

@K�

@�
= �K�, K�(p,� = 0) = �(p).

Since the di↵erential operators are linear in (4), we can further convolve the
terms with the initial data Y such that

@

@�
(K� ⇤ Y ) = �(K� ⇤ Y ), K� ⇤ Y (p,� = 0) = Y (p),

where

K� ⇤ Y (p) =

Z

M
K�(p, q)Y (q) dµ(q).

Hence K� ⇤ Y is a solution of (3).

2.2. Di↵usion Smoothing

The isotropic di↵usion (3) has been numerically solved by various numer-
ical techniques (Chung, 2001; Andrade et al., 2001; Cachia et al., 2003a,b;
Chung and Taylor, 2004). For di↵usion smoothing, the di↵usion equation
needs to be discretized using the cotan formulation (Chung, 2001; Chung
and Taylor, 2004; Qiu et al., 2006). Since there are many di↵erent cotan
formulations, we followed the formulation first given in Chung (2001). Dif-
fusion equation (3) is discretized as

@f

@�
= �A

�1
Cf , (5)
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Figure 1: Heat kernel shape with bandwidths 0.025, 1.25 and 5 on a mandible surface.
The level sets of the heat kernel form geodesic circles.

where f = (f(p1,�), · · · , f(pn,�))0 is the vector of measurements over all
mesh vertices at time �. A = (Aij) is the sti↵ness matrix and C = (Cij) is
the global coe�cient matrix, which is the assemblage of individual element
coe�cients. The sparse matrices A and C are explicitly given as follows.

Let T�
ij and T+

ij denote two triangles sharing the vertex pi and its neigh-
boring vertex pj in a mesh. Let two angles opposite to the edge containing
pi and pj be �ij and ✓ij respectively for T+

ij and T�
ij . The o↵-diagonal entries

of the sti↵ness matrix are

Aij =
1

12

�
|T+

ij |+ |T�
ij |

�

if pi and pj are adjacent and Aij = 0 otherwise. | · | denotes the area of
a triangle. The diagonal entries are summed as Aii =

Pn
j=1Aij . The o↵-

diagonal entries of the global coe�cient matrix are

Cij = �1

2
(cot ✓ij + cot�ij)

if pi and pj are adjacent and Cij = 0 otherwise. The diagonal entries is
similarly given as the sum Cii = �

Pn
j=1Cij .

Ordinary di↵erential equation (5) is then further discretized at each point
using the forward finite di↵erence scheme: :

f(pi,�n+1) = f(pi,�n) + (�n+1 � �n)b�f(pi,�n), (6)

where b�f(pi,�n) is the estimated Laplacian obtained from the i-th row
of �A

�1
Cf . For the forward Euler scheme to converge, we need to have

su�ciently small step size �� = �n+1 � �n for convergence (Chung, 2001).

6



2.3. Iterated Kernel Smoothing

The di↵usion equation (3) can be approximately solved by iteratively
performing Gaussian kernel smoothing (Chung et al., 2005). In iterated
kernel smoothing, the weights of the kernel are spatially adapted to follow
the shape of heat kernel in discrete fashion along a surface mesh. Heat kernel
smoothing with large bandwidth can be broken into iterated smoothing with
smaller bandwidths (Chung et al., 2005):

Km� ⇤ Y = K� ⇤ · · · ⇤K�| {z }
m times

⇤Y. (7)

Then using the parametrix expansion (Rosenberg, 1997; Wang, 1997), we ap-
proximate the heat kernel with small bandwidth locally using the Gaussian
kernel:

K�(p, q) =
1p
4⇡�

exp[�d2(p, q)

4�
][1 +O(�2)], (8)

where d(p, q) is the geodesic distance between p and q. For su�ciently small
bandwidth �, all the kernel weights are concentrated near the center, so the
first neighbors of a given mesh vertex is su�cient for approximation. Unfor-
tunately, this approximation is bound to compound error at each additional
iteration. For numerical implementation, we used the normalized truncated
kernel given by

W�(p, qi) =
exp

⇥
� d2(p,qi)

4�

⇤

Pr
j=0 exp

⇥
� d2(p,qj)

4�

⇤ , (9)

where q1, · · · , qr are r neighboring vertices of p = q0. Denote the truncated
kernel convolution as

W� ⇤ Y (p) =
rX

i=0

W�(p, qi)Y (qi). (10)

Then, the iterated heat kernel smoothing is defined as

Wm� ⇤ Y (p) = W� ⇤ · · · ⇤W�| {z }
m times

⇤Y (p).

2.4. Heat Kernel Regression

We present a new regression framework for solving the isotropic di↵usion
equation (3). Let � be the Laplace-Beltrami operator on M. Solving the
eigenvalue equation

� j = �� j , (11)
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we order eigenvalues
0 = �0 < �1 < �2 < · · · ,

and corresponding eigenfunctions  0, 1, 2, · · · (Rosenberg, 1997; Chung
et al., 2005; Lévy, 2006; Shi et al., 2009). Then, the eigenfunctions  j form
an orthonormal basis in L2(M). There is extensive literature on the use of
eigenvalues and eigenfunctions of the Laplace-Beltrami operator in medical
imaging and computer vision (Lévy, 2006; Qiu et al., 2006; Reuter et al.,
2009; Reuter, 2010; Zhang et al., 2007, 2010). The eigenvalues have been
used in caudate shape discriminators (Niethammer et al., 2007). Qiu et al.
used eigenfunctions in constructing splines on cortical surfaces (Qiu et al.,
2006). Reuter used the topological features of eigenfunctions (Reuter, 2010).
Shi et al. used the Reeb graph of the second eigenfunction in shape char-
acterization and landmark detection in cortical and subcortical structures
(Shi et al., 2008, 2009). Lai et al. used the critical points of the second
eigenfunction as anatomical landmarks for colon surfaces (Lai et al., 2010).
Since the direct application of eigenvalues and eigenfunctions as features of
interest is the beyond the scope of the paper, we will not pursue the issue
in detail here.

Using the eigenfunctions, heat kernel K�(p, q) is defined as

K�(p, q) =
1X

j=0

e��j� j(p) j(q), (12)

where � is the bandwidth of the kernel. Figure 1 shows examples of a heat
kernel with di↵erent bandwidths. Then heat kernel regression or smoothing
of functional measurement Y is defined as

K� ⇤ Y (p) =
1X

j=0

e��j��j j(p), (13)

where �j = hY, ji are Fourier coe�cients (Chung et al., 2005) (Figure 2).
Kernel smoothing K� ⇤ Y is taken as the estimate for the unknown mean
signal ✓. The degree for truncating the series expansion can be automatically
determined using the forward model selection procedure.

Unlike previous approaches to heat di↵usion (Andrade et al., 2001; Chung
and Taylor, 2004; Joshi et al., 2009; Tasdizen et al., 2006), our proposed
method avoids the direct numerical discretization of the di↵usion equation.
Instead we discretize the basis functions of the given manifold M by solving
for the eigensystem (11) and obtain �j and  j .
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Figure 2: Schematic of heat kernel smoothing. Given a functional data on a surface, we
compute the eigenfunctions  j and the Fourier coe�cients �j . Then we combine all the
terms and reconstruct the functional signal back.

2.5. Di↵usion Wavelet Transform

We can establish the relationship between the kernel regression and a
recently popular di↵usion wavelet framework. In fact it can be shown that
the proposed kernel regression is equivalent to the wavelet transform. This
mathematical equivalence removes a need for constructing wavelets using
a complicated computational machinery as often done in previous studies
(Antoine et al., 2010; Hammond et al., 2011; Kim et al., 2012) and o↵ers a
simpler but more unified alternative.

Consider a wavelet basis W�,q(p) obtained from a mother wavelet W
with scale and translation parameters � and q respectively in a Euclidean
space:

W�,q(p) =
1

�
W

�p� q

�

�
.

Generalizing the idea of scaling a mother wavelet in Euclidean space to a
curved surface is trivial. However, the di�culty arises when one tries to
translate a mother wavelet on a curved surface since it is unclear how to de-
fine translation along the surface. If one tries to modify the existing spherical
wavelet framework to an arbitrary surface (Nain et al., 2007; Bernal-Rusiel
et al., 2008), one immediately encounters the problem of establishing regu-
lar grids on an arbitrary surface. The recent works based on the di↵usion
wavelets bypass this problem by taking bivariate kernel as a mother wavelet
(Antoine et al., 2010; Hammond et al., 2011; Mahadevan and Maggioni,
2006; Kim et al., 2012).
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For some scale function g that satisfies the admissibility conditions, dif-
fusion wavelet W�,q(p) at position p and scale � is given by

W�,q(p) =
kX

j=0

g(�j�) j(p) j(q),

where �j and �j are eigenvalues and eigenfunctions of the Laplace-Beltrami
operator. The wavelet transform is then given by

hW�,q, Y i =
Z

M
W�,q(p)Y (p) dµ(p). (14)

If we let g(�j�) = exp(��j�), we have the heat kernel as the wavelet,
i.e.

W�,p(q) = H�(p, q),

The bandwidth � of the heat kernel is the scale parameter while the trans-
lation is done by shifting one argument in the bivariate heat kernel. Subse-
quently, the wavelet transform (14) can be rewritten as

hW�,p, Y i =
kX

j=0

e��j��j j(q) (15)

with �j = hY, ji. The expression (15) is exactly the finite truncation of heat
kernel regression in (12). Hence, di↵usion wavelet analysis can be simply
performed within the proposed heat kernel regression framework without
any additional wavelet machinery. From now on, we will not distinguish
heat kernel regression and di↵usion wavelet transform.

Although the heat kernel regression is constructed using global basis
functions  j , surprisingly the kernel regression at each point p coincides
with the wavelet transform at that point. Hence, it also inherits all the
localization property of wavelets at that point. This is clearly demonstrated
in a simulation given in Figure 3, where a step function of value 1 in the
circular band 1/8 < ✓ < 1/4 (angle from the north pole) and of value 0 out-
side of the band is constructed. Note that on a sphere, the Laplace-Beltrami
operator is the spherical Laplacian and its eigenfunctions are spherical har-
monics Ylm of degree l and order m. Then the step function is reconstructed
using the spherical harmonic series expansion

Y (p) =
78X

l=0

lX

m=�l

�lmYlm(p),

10



Figure 3: Gibbs phenomenon (ringing artifacts) is visible in the spherical harmonic series
expansion with degree 78 via LSE of the step function defined on a sphere. On the other
hand, the heat kernel regression with the same degree and bandwidth 0.0001 shows less
visible artifacts.

where the spherical harmonic coe�cients �lm = hY, Ylmi are obtained by the
least squares estimation (LSE). On the unit sphere, we used the heat kernel
regression of the form

Y (p) =
78X

l=0

lX

m=�l

e�l(l+1)��lmYlm(p)

with the small bandwidth � = 0.0001. The spherical harmonic expansion
clearly shows severe ringing artifacts compared to the kernel regression,
which inherits the localization power of wavelets. This is why the Gibbs
phenomenon is not visibly significant.

2.6. Parameter Estimation in Heat Kernel Smoothing

Since the closed form expression for the eigenfunctions of the Laplace-
Beltrami operator on an arbitrary surface is unknown, the eigenfunctions
are numerically computed by discretizing the Laplace-Beltrami operator. To
solve the eigensystem (11), we need to discretize it on mandible triangular
meshes using the cotan formulation (Chung, 2001; Chung and Taylor, 2004;
Shi et al., 2009; Qiu et al., 2006; Lévy, 2006; Reuter et al., 2006, 2009;
Rustamov, 2007; Zhang et al., 2007; Vallet and Lévy, 2008; Wardetzky,
2008).

Among many di↵erent cotan formulations used in computer vision and
medical image analysis, we used the formulation given in Chung (2001) and
Qiu et al. (2006). It requires discretizing (11) as the following generalized
eigenvalue problem:

C = �A , (16)
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Figure 4: Eigenfunctions of various degrees for a sample mandible surface. The eigenfunc-
tions are projected on the surface smoothed by the proposed heat kernel smoothing with
bandwidth � = 0.5 and degree k = 132. The smoothed surface is obtained by heat kernel
smoothing applied to the coordinates of the surface mesh with the same parameter while
preserving the topology of mesh. The first eigenfunction is simply  0 = 1/

p
µ(M). The

color scale is thresholded at ±0.015 for better visualization.

where the global coe�cient matrix C is the assemblage of individual ele-
ment coe�cients and A are the sti↵ness matrix. We solved (16) using the
Implicitly Restarted Arnoldi Method (Hernandez et al., 2006; Lehoucq et al.,
1998) without consuming large amount of memory and time for sparse en-
tries. Figure 4 shows the first few eigenfunctions for a mandible surface.
The first eigenfunction is trivially given as �0 = 0 and  0 = 1/

p
µ(M)

for a closed compact surface. It is possible to have multiple eigenfunctions
corresponding to a single eigenvalue.

Once we obtain the eigenfunctions numerically, we estimate the kernel
regression parameters �j by minimizing the sum of squared residual using
the least squares estimation (LSE):

arg min
�0,··· ,�k

���Y (p)�
kX

j=0

e��j��j j(p)
���
2
. (17)

The least squares method is often used in estimating the coe�cients in
spherical harmonic expansion (Shen et al., 2004; Styner et al., 2006; Chung
et al., 2008). Suppose we have n mesh vertices p1, · · · , pn. Let

Y = (Y (p1), · · · , Y (pn))
0
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be the surface measurements over all n vertices. Denote the j-th eigenfunc-
tion evaluated at n vertices as

 j = ( j(p1), · · · , j(pn))
0.

By letting � = 0, (17) achieves the minimum when

Y =  �, (18)

where = ( 0, · · · , k) is the matrix of size n⇥(k+1). The LSE estimation
of coe�cients � is then given by

b� = ( 0
 )�1

 

0
Y. (19)

Since it is expected that the number of mesh vertices is substantially lager
than the number of eigenfunctions to be used,  0

 is well conditioned and
invertible.

2.7. Random Field Theory

Once we smooth functional data on a surface, we apply the statistical
parametric mapping (SPM) framework for analyzing and visualizing statis-
tical tests performed on the template surface that is often used in struc-
tural neuroimaging studies (Andrade et al., 2001; Lerch and Evans, 2005;
Wang et al., 2010; Worlsey et al., 1995; Yushkevich et al., 2008). Since test
statistics are constructed over all mesh vertices on the mandible, multiple
comparisons need to be accounted for possibly using the random field theory
(Taylor and Worsley, 2007; Worlsey et al., 1995; Worsley et al., 2004). The
random field theory assumes the measurements to be smooth Gaussian ran-
dom field. Heat kernel smoothing will make data more smooth and Gaussian
and increase the signal-to-noise ratio (Chung et al., 2005). The proposed
kernel smoothing can be naturally integrated into the random field theory
based statistical inference framework (Taylor and Worsley, 2007; Worsley
et al., 2004; Worlsey et al., 1995).

Given linear model (1), we are interested in determining the significance
of ✓, i.e.

H0 : ✓(p) = 0 for all p 2 M vs. H1 : ✓(p) > 0 for some x 2 M. (20)

Note that any point p0 that gives ✓(p0) > 0 is considered as signal. The
hypotheses (20) are an infinite dimensional multiple comparisons problem
for continuously indexed hypotheses over the manifold M. The underlying
group level signal h is estimated using the proposed heat kernel regression.
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Subsequently, a test statistic is often given by a T- or F-field Y (p) (Worsley
et al., 2004; Worlsey et al., 1995).

The multiple comparison corrected p-value computation is then given by
the random field theory (Adler, 1981; Cao and Worsley, 2001; Taylor and
Worsley, 2007; Worsley, 2003). For the F -field Y with ↵ and � degrees of
freedom defined on 2D manifolds MF , it is known that

P
⇣

sup
p2MF

Y (p) > h
⌘
⇡ µ2(MT )⇢2(h) + µ0(MF )⇢0(h) (21)

for su�ciently high threshold h. µd(MF ) is the d-th Minkowski functional
of MF and ⇢d is the d-th Euler characteristic (EC) density of Y . The
Minkowski functionals are simply

µ2(MT ) = area(MT )/2

µ0(MT ) = �(MT ) = 2.

The EC-density for F -field is then given by

⇢2 =
1

4⇡�2
�(↵+��2

2 )

�(↵2 )�(
�
2 )

✓
↵h

�

◆ (↵�2)
2

✓
1 +

↵h

�

◆� (↵+��2)
2


(� � 1)

↵h

�
� (↵� 1)

�

⇢0 = 1� P (F↵,�  h),

where P (F↵,�  h) is the cumulative distribution function of F -stat with ↵
and � degrees of freedom. Note that the second order term µ2(MT )⇢2(h)
dominates the expression (21) and it explicitly has the bandwidth � of the
kernel regression.

3. Experiments

3.1. CT Image Preprocessing

We applied the proposed smoothing method to mandible surfaces ob-
tained from CT. The CT images were obtained from several di↵erent models
of GE multi-slice helical CT scanners. The CT scans were acquired directly
in the axial plane with 1.25 mm slice thickness, matrix size of 512⇥512 and
15–25 cm field of view (FOV). Image resolution varied as voxel size ranged
from 0.25 mm3 to 0.49 mm3 as determined by the ratio of FOV divided by
the matrix. CT scans were converted to DICOM format and subsequently
Analyze 8.1 software package (AnalyzeDirect, Inc., Overland Park, KS) was
used in segmenting binary mandible structure based on histogram thresh-
olding.
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Image acquisition and processing artifacts, and partial voluming pro-
duce topological defects such as holes and handles in any medical images.
In mandibles CT images, unwanted cavities, holes and handles in the binary
segmentation are mainly resulting from di↵erences in CT intensity between
relatively low mandible and teeth and more dense cortical bone and the
interior trabecular bone (Andresen et al., 2000; Loubele et al., 2006). In
mandibles, these topological noises can appear in thin or cancellous bone,
such as in the condylar head and posterior palate (Stratemann et al., 2010).
An example is shown in Figure 5 where the tooth cavity forms a bridge over
the mandible. If we apply the isosurface extraction on the topologically de-
fect segmentation results, the resulting surface will have many tiny handles
(Wood et al., 2004; Yotter et al., 2009). These handles complicate subse-
quent surface mesh operations such as smoothing and parameterization. So
it is necessary to correct the topology by filling the holes and removing han-
dles. If we correct such topological defects, it is expected that the resulting
isosurface is topologically equivalent to a sphere.

Various topology correction techniques have been proposed in medical
image processing. Rather than attempting to repair the topological de-
fects of the already extracted surfaces (Wood et al., 2004; Yotter et al.,
2009), we performed the topological simplification on the volume represen-
tation directly using morphological operations (Guskov and Wood, 2001;
Van Den Boomgaard and Van Balen, 1992; Yotter et al., 2009). The direct
correction on surface meshes can possibly cause surfaces to intersect each
other (Wood et al., 2004). By checking the Euler characteristic, the holes
were automatically filled up using morphological operations to make the
mandible binary volume to be topologically equivalent to a solid sphere. All
areas enclosed by the higher density bone that is included in the mandible
definition are morphed into being included as part of the definition of the
mandible object. Then, the hole-filled images were converted to surface
meshes via the marching cubes algorithm.

In our fully automated algorithm, we first removed the speckles of noise
components by identifying the largest connected component in the binary
volume. Then we applied the morphological closing operation in each 2D
slice of CT images one by one in all three axes. Recombining the topology
corrected 2D slices resulted in topologically correct surface meshes (Figure
5). The reason 2D topological closing operations are used is mainly due to
its performance and relatively simpler implementation than 3D topological
closing operations. In 2D topological operations, we only need to worry
about 8 neighboring voxels in a 2D image slice. In contrast, we need to
worry about 26 neighboring voxels in a 3D image volume. There are many
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Figure 5: Topological correction on mandible binary segmentation and surface. Disjoint
tiny speckles of noisy components are removed by labeling the largest connected compo-
nent, and holes and handles are removed by the morphological closing operation. Left:
A slice shows holes and handles in teeth regions. The isosurface has Euler characteristic
� = 50. Right: After the correction with � = 2.

large concave regions left out by teeth and fillings. These regions may not
be closed with 3D closing operations. However, we found that they can
be easily patched up with 2D closing operations, which tend to put more
constraints on the underlying topology. Instead of performing a single 3D
closing operation that may not work, we are sequentially performing 2D
closing operations in each image slices in all x-, y- and z-directions. Figure
6 shows a simulated cavity example where existing 3D closing operation will
not patch (Van Den Boomgaard and Van Balen, 1992) while the proposed
sequential application of 2D closing operations will easily patch. Note that
any 3D object, whose every 2D cross-sections are topologically equivalent
to a solid disk, is topologically equivalent to a solid sphere. So the problem
of 3D topology correction can be reduced to a much simpler problem of 2D
topology correction of multiple slices.

At the end of the processing, we checked the Euler characteristic of re-
sulting surface meshes. Note that for each triangle, there are three edges.
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Figure 6: Cavity patching by topological closing operations. Left: Surface model of the
binary volume that simulates a tooth cavity. Middle: 3D image volume based closing
operation that will not properly patch the cavity region. Right: 2D image slice based
closing operation that patch the cavity region properly.

For a closed surface topologically equivalent to a sphere, two adjacent tri-
angles share the same edge. Hence, the total number of edges is E = 3F/2.
Hence, we checked if the Euler characteristic is simply given by � = V �F/2
at the end. All binary volumes produced the topologically correct surfaces
without an exception. Figure 5 shows an example of before and after the
topology correction.

3.2. Validation and Performance Analysis of Heat Kernel Smoothing

Here, we compared the performance of the proposed kernel regression
against iterated kernel and di↵usion smoothing techniques. The high accu-
racy of the heat kernel construction using LB-eigenfunctions is previously
reported in Kim et al. (2011).

3.2.1. Comparison against iterated kernel smoothing

The proposed heat kernel regression was compared against the widely
used iterated kernel smoothing framework (Chung et al., 2005; Hagler Jr.
et al., 2006; Han et al., 2006). We compared the performance of iterated
kernel smoothing (10) against heat kernel smoothing. The x, y and z surface
coordinates are treated as functional measurements on the original surface
and smoothed with the both methods. For the comparison of performance
between both smoothing methods, we calculated the root mean squared er-
rors (RMSE) between them. The mean of the squared errors is taken over
the surface. For the heat kernel regression, we used the bandwidth � = 0.5
and eigenfunctions up to k = 132 degree. For iterated kernel smoothing,
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Figure 7: Plot of the RMSE of iterated kernel smoothing against the proposed heat kernel
regression for coordinates x (middle), y (top) and z (bottom) over the number of iterations
up to 200. For heat kernel regression, � = 0.5 and k = 132 are used. Widely used iterated
kernel smoothing does not converge to heat di↵usion but something else. The right figure
is the squared di↵erence between the two methods. The di↵erence is mainly localized in
high curvature areas, where the Gaussian kernel used in the iterated kernel smoothing
fails to approximate the heat kernel.

we varied the number of iterations 1  m  200 with the correspond-
ingly smaller bandwidth 0.5/m to have the e↵ective bandwidth of 0.5. The
performance of the iterated kernel smoothing depended on the number of
iterations, as shown in the plot of RMSE of mesh coordinates over the num-
ber of iterations (Figure 7). The RMSE was up to 0.5901 and it did not
decrease even when we increased the number of iterations. The right image
in Figure 7 is the squared di↵erence between the two methods. The di↵er-
ence is mainly localized in high curvature areas, where the Gaussian kernel
used in the iterated kernel smoothing fails to approximate the heat kernel.
This comparison quantitatively demonstrates the limitation of iterated heat
kernel smoothing which does not converge to heat di↵usion.

3.2.2. Comparison against di↵usion smoothing

We further compared the proposed heat kernel regression to di↵usion
smoothing widely used in smoothing surface data (Andrade et al., 2001;
Cachia et al., 2003a,b; Chung and Taylor, 2004). For the forward Euler
scheme (6) to converge, we need to have su�ciently small step size �� for
convergence. We investigated the convergence of di↵usion smoothing against
the heat kernel regression with bandwidths � = 0.5, 20, 50, 100 and k = 132.
For di↵usion smoothing, small fixed step size of �� = 0.025 was used with
m = 20, 800, 2000, 4000 iterations. The di↵usion smoothing result was found
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Figure 8: Smoothed mandible surfaces using three di↵erent techniques with the same
bandwidths. They are all expected to be the solution of isotropic di↵usion. The x, y
and z surface coordinates are treated as functional measurements on the original surface
and smoothed. The proposed heat kernel smoothing is done with various bandwidths,
� = 0.5, 20, 50, 100. Iterated kernel smoothing performs iterative kernel smoothing with
heat kernel approximated linearly with Gaussian kernel (Chung et al., 2005). Di↵usion
smoothing directly solves the di↵usion equation using the same FEM discretization (Chung
and Taylor, 2004). The di↵usion smoothing and heat kernel smoothing are supposed to
converge as the bandwidth increases.

to be inaccurate for less than 10 iterations, but it converged quickly to heat
kernel smoothing as the number of iterations m increases and giving the
compatible results.

Figure 8 shows the result of smoothing surface coordinates with three
di↵erent techniques: iterated kernel smoothing (Chung et al., 2005), the pro-
posed kernel regression and di↵usion smoothing based on FEM discretiza-
tion (Chung and Taylor, 2004). We replaced the original surface coordinates
with the smoothed ones for the visualization at the end. However, in the ac-
tual computation, we did not replace the original surface coordinates for all
the three methods. Iterated kernel smoothing compounds the discretization
errors over iterations so it does not converge to the kernel regression and
di↵usion smoothing. Di↵usion smoothing and heat kernel smoothing share
the same FEM discretization and expected to converge as the bandwidth
increases.

3.3. Simulation Studies

Since there is no known ground truth in the imaging data set we are us-
ing, it is uncertain how the proposed method will perform in the real data.
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Figure 9: Simulation study I on a T-junction shaped surface where three black signal
regions of di↵erent sizes are taken as the ground truth. 60 independent functional mea-
surements on the T-junction were simulated as |N(0, 22)| at each mesh vertices. We are
only simulating positive numbers to better reflect the positive measurements used in the
study. Value 1 was added to the black regions in 30 of measurements which served as group
2 while the other 30 measurements were taken as group 1. T-statistics are shown for these
simulation (original) and three techniques with bandwidth 0.5. Heat kernel smoothing
performed the best in detecting the ground truth.

Therefore, it is necessary to perform simulation studies with the ground
truths. We performed two simulations with small and larg signal-to-noise
ratio (SNR) settings on a T-junction shaped surface (Figure 9). The T-
junction surface is chosen since it is a surface with three di↵erent curva-
tures: convex, concave and almost flat regions. Note surface smoothing
methods perform di↵erently under di↵erent curvatures. Three black signal
regions of di↵erent sizes were taken as the ground truth at these regions.
60 independent functional measurements on the T-junction were simulated
as |N(0, �2)|, the absolute value of normal distribution with mean 0 and
variance �2, at each mesh vertices. Subsequently, value 1 was added to the
black regions in 30 of measurements which served as group 2 while the other
30 measurements were taken as group 1. So the group 1 has distribution
|N(0, �2)| while the group 2 has distribution |N(1, �2)| in the signal regions.

20



Figure 10: Simulation study II on a T-junction shaped surface where the ground truth is
the same as the simulation study I (Figure 9). 60 independent functional measurements
on the T-junction were simulated as |N(0, 0.52)| at each mesh vertices. Value 1 was added
to the black regions in 30 of measurements which served as group 2 while the remaining
30 measurements are taken as group 1. Due to large SNR, the group means show visible
group separations. All the methods detected the signal regions; however, the heat kernel
smoothing and di↵usion smoothing techniques were more sensitive at large SNR.

Larger variance �2 corresponds to smaller SNR.
In Study I, �2 = 22 was used to simulate functional measurements with

substantially smaller SNR. Figure 9 shows the simulation results. For iter-
ated kernel and di↵usion smoothing, we used the bandwidth � = 0.5 and
100 iterations. For smaller SNR, it is necessary to smooth with larger band-
width, which is determined empirically. For heat kernel smoothing, the same
bandwidth and 1000 eigenfunctions were used. The same number of eigen-
functions is used through the study. For all three smoothing techniques,
bandwidth is the main parameter that determines the performance. The
results are stable under the perturbation of other parameters. Then we per-
formed the two sample t-test with the random field theory based threshold
of 4.90 to detect the group di↵erence at 0.05 level.

Iterated kernel smoothing as well as using no smoothing at all did not
correctly identify any signal region. However, heat kernel and di↵usion
smoothing correctly identified 94% and 91% of the signal regions. This im-
provement for heat kernel smoothing is significant considering that the error
rate of 5% (0.05) is considered as the standard threshold for accepting or re-
jecting in a hypothesis. Also heat kernel and di↵usion smoothing incorrectly
identified 0.26% and 0.26% non-signal regions as signal. The both methods

21



use the similar FEM discretization schemes although di↵usion smoothing
sur↵er more discretization error. The discretization error is related to the
forward Euler scheme that is often employed in di↵usion smoothing (Chung,
2001; Andrade et al., 2001; Cachia et al., 2003b). For better accuracy, ex-
tremely small time step is required but this requires a very large number
of iterations, which slows the method drastically. There might be a more
accurate faster discretization scheme but the proposed method is compared
against existing standard methods in medical imaging literature that are
actually used in practice.

In Study II, �2 = 0.52 was used to simulate functional measurements
with substantially larger SNR. Due to large SNR, the group means showed
visible group separations (Figure 10). For iterated kernel and di↵usion
smoothing, we used bandwidth � = 0.1 and 100 iterations. For heat kernel
smoothing, the same bandwidth and with 1000 eigenfunctions were used. All
the methods detected the signal regions; however, the heat kernel smoothing
and di↵usion smoothing techniques are more sensitive at large SNR. All the
methods correctly identified the signal regions with 100% accuracy. Iterated
kernel smoothing as well as without any smoothing did not incorrectly iden-
tified any non-signal regions as signal. However, due to the blurring e↵ects,
heat kernel and di↵usion smoothing incorrectly identified 0.9% and 0.8%
non-signal regions as signal, which is negligible. For large SNR setting,
all the methods were reasonably able to detect the correct signal regions
without much error.

In summary, in larger SNR, all three methods performed well. However,
in substantially smaller SNR, the proposed kernel regression performed the
best closely followed by di↵usion smoothing. The iterated kernel smoothing
as well as no smoothing at all did not perform well in the low SNR setting.

4. Application: Mandible Growth Analysis

As an illustration of the proposed kernel regression technique, we per-
formed a mandible growth analysis on the CT imaging data set consisting
of 77 human subjects between ages 0 and 19. Subjects are binned into three
age categories: ages between 0 and 6 years (group I), between 7 and 12
years (group II), and between 13 and 19 years (group III). There are 26,
20 and 31 subjects in group I, II and III respectively. The main biological
hypothesis of interest is if there are any localized growth spurts between
these age groups. Mandible surface meshes for all subjects were constructed
through the image acquisition and processing steps explained in the previous
section. For surface alignment, di↵eomorphic surface registration has been
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Figure 11: Left: Mandible F155-12-08 which forms an initial template MI . All other
mandibles are a�ne registered to F155-12-08. Middle: The superimposition of a�ne regis-
tered mandibles showing local misalignment. Di↵eomorphic registration is then performed
to warp misaligned a�ne transformed mandibles. Right: The average of deformation with
respect to F155-12-08 provides the final population average template MF where statistical
parametric maps will be constructed.

performed to align mandible surfaces across subjects (Miller and Qiu, 2009;
Vaillant et al., 2007; Qiu and Miller, 2008; Yang et al., 2011).

4.1. Di↵eomorphic Surface Registration

We have chosen a 12 year old subject identified as F155-12-08, which
served as the reference template in previous studies (Seo et al., 2010, 2011),
as initial template MI and aligned the remaining 76 mandibles to the initial
template a�nely to remove the overall size variability. Some subject may
have larger mandible than others so it is necessary to remove the global size
di↵erences in localized shape modeling. From the a�ne transformed indi-
vidual mandible surfaces Mj , we performed an additional nonlinear surface
registration to the template using the large deformation di↵eomorphic met-
ric mapping (LDDMM) framework (Miller and Qiu, 2009; Vaillant et al.,
2007; Qiu and Miller, 2008; Yang et al., 2011).

In LDDMM framework (Miller and Qiu, 2009; Vaillant et al., 2007; Qiu
and Miller, 2008; Yang et al., 2011), given a surface M, the metric space
is constructed as an orbit of M under the group of di↵eomorphic transfor-
mations G. The di↵eomorphic transformations (one-to-one, smooth forward
and inverse transformation) are introduced as transformations of the coor-
dinates on the background space ⌦ ⇢ R3, : ⌦ ! ⌦. The di↵eomorphisms
�t 2 G is constructed as a flow of ordinary di↵erential equations (ODE),
where �t, t 2 [0, 1] follows

�̇t = vt(�t), �0 = Id, t 2 [0, 1], (22)
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where Id denotes the identity map and vt are the associated velocity vector
fields. The vector fields vt are constrained to be su�ciently smooth, so that
(22) is integrable and generates di↵eomorphic transformations over finite
time. The smoothness is ensured by forcing vt to lie in a smooth vector
field V , which is modeled as a reproducing kernel Hilbert space with linear
operator L associated with norm kuk2V = hLu, ui2 (Dupuis et al., 1998). The
group of di↵eomorphisms G(V ) is then the solutions of (22) with the vector
fields satisfying

R 1
0 kvtkV dt < 1.

Now, given the template surface M and an individual surface Mj , the
geodesic �t, t 2 [0, 1] which lies in the manifold of di↵eomorphisms and
connects M and Mj , is defined as

�0 = Id, �1 · M = Mj .

For our application, we employed the LDDMM approach to estimate the
template among all subjects. The estimated template can be simply com-
puted through averaging the initial velocity across all the subjects (Zhong
and Qiu, 2010), which is similar to the unbiased template estimation ap-
proach in Joshi et al. (2004). Subsequently, we recomputed the displacement
fields with respect to the initial template MI , which is a 12 year old subject
identified as F155-12-08. We then averaged the deformation fields from the
initial template MI to individual subjects, we obtain the yet another final
template MF . Figure 11 shows the initial and final templates. Figure 12
shows the mean displacement di↵erences between the groups I and II (top)
and II and III (bottom). Each row shows the group di↵erences of the dis-
placement: group II - group I (first row) and group III - group II (second
row). The arrows are the growth direction given by the mean displacement
di↵erences and colors indicate their lengths in mm.

4.2. Statistical Analysis

We are interested in determining the significance of the mean displace-
ment di↵erences in Figure 12. Since the length measurement provides a
much easier biological interpretation, we used the length of displacement
vector as a response variable. The random field theory assumes the mea-
surements to be smooth Gaussian random field. Heat kernel smoothing on
the length measurement will make the length measurement more smooth
and Gaussian as well as increase the signal-to-noise ratio (Chung et al.,
2005). Heat kernel smoothing is applied with bandwidth � = 20 using 1000
eigenfunctions on the final template MF . The number of eigenfunctions
used is more than su�cient to guarantee relative error less than 0.3%. The
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Figure 12: Mandibles are binned into three age groups: group I (ages 0 and 6), group II
(ages 7 and 12) and group III (ages 13 and 19). Each row shows the mean group di↵erences
of the displacement: group II - group I (first row) and group III - group II (second row).
The arrows are the mean displacement di↵erences and colors indicate their lengths in mm.

heat kernel smoothing of the displacement length is taken as the response
variable. We constructed the F random field testing the length di↵erence
between the age groups I and II, and II and III showing the regions of growth
spurts (Figure 13).

For comparing the groups I and II, it is based on F -field with 1 and
44 degrees of freedom while for the groups II and III, it is based on F -
field with 1 and 49. The multiple comparison corrected F -stat thresholds
corresponding to ↵ = 0.05 and 0.01 levels are respectively 8.00 and 10.52
(group II-I) and 8.00 and 10.67 (group III- II). In the F -statistic map shown
in Figure 13, any black and red regions are considered as exhibiting growth
spurts at 0.01 and 0.05 levels respectively. Our finding is consistent with
previous findings of simultaneous growth forward and downward directions
(Scott, 1976; Smartt Jr. et al., 2005; Walker and Kowalski, 1972; Lewis
et al., 1982; Seo et al., 2011) and also bilateral growth (Enlow and Hans,
1996).
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Figure 13: F -statistic map showing the regions of significant mean displacement di↵erence
shown in Figure 12.

5. Conclusions

This study presents a novel heat kernel regression framework where the
functional measurements are expanded using the weighted Laplace-Beltrami
eigenfunctions analytically. The weighted eigenfunction expansion is related
to isotropic heat di↵usion and the di↵usion wavelet transform. The method
is validated on a unit sphere, where the spherical harmonics are the eigen-
functions. As demonstrated in the validation, the heat kernel regression
provides more accurate results in comparison with the other surface-based
smoothing techniques. However, in terms of statistical performance, as
shown in the simulations, there is not much gain in the proposed kernel
regression over di↵usion smoothing. Although both techniques share the
identical FEM discretization, the kernel regression is a parametric model
while di↵usion smoothing is not. The flexibility of the parametric model
made us to establish the mathematical equivalence of kernel regression, dif-
fusion smoothing and di↵usion wavelets. This is the main contribution of
the paper.

The method is subsequently applied in mandible growth characteriza-
tion. Based on the significant directions of the growth identified in Figure
12 and 13, we observed the elongation and narrowing of the mandible, which
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is consistent with previous literature. For more complex growth modeling,
we are currently securing additional samples.
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topology from isosurfaces. ACM Transactions on Graphics (TOG) 23,
190–208.

Worlsey, K., Poline, J.B., Vandal, A., Friston, K., 1995. Test for distributed,
non-focal brain activations. NeuroImage 2, 173–181.

Worsley, K., 2003. Detecting activation in fMRI data. Statistical Methods
in Medical Research. 12, 401–418.

Worsley, K., Taylor, J., Tomaiuolo, F., Lerch, J., 2004. Unified univariate
and multivariate random field theory. NeuroImage 23, S189–195.

Yang, X., Goh, A., Qiu, A., 2011. Locally linear di↵eomorphic metric embed-
ding (LLDME) for surface-based anatomical shape modeling. NeuroImage
56, 149–161.

34



Yger, F., Rakotomamonjy, A., 2011. Wavelet kernel learning. Pattern Recog-
nition 44, 2614–2629.

Yotter, R.A., Dahnke, R., Gaser, C., 2009. Topological correction of brain
surface meshes using spherical harmonics, in: Medical Image Computing
and Computer-Assisted Intervention (MICCAI), Springer. pp. 125–132.

Yushkevich, P., Zhang, H., Simon, T., Gee, J., 2008. Structure-specific
statistical mapping of white matter tracts. NeuroImage 41, 448–461.

Zhang, H., van Kaick, O., Dyer, R., 2007. Spectral methods for mesh pro-
cessing and analysis, in: EUROGRAPHICS, pp. 1–22.

Zhang, H., van Kaick, O., Dyer, R., 2010. Spectral mesh processing. Com-
puter Graphics Forum 29, 1865–1894.

Zhong, J., Qiu, A., 2010. Multi-manifold di↵eomorphic metric mapping for
aligning cortical hemispheric surfaces. Neuroimage 49, 355–365.

Zhu, H., Ibrahim, J., Tang, N., Rowe, D., Hao, X., Bansal, R., Peterson, B.,
2007. A statistical analysis of brain morphology using wild bootstrapping.
IEEE Transactions on Medical Imaging 26, 954–966.

35


