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Abstract. We present a new unified kernel regression framework on
manifolds. Starting with a symmetric positive definite kernel, we for-
mulate a new bivariate kernel regression framework that is related to
heat diffusion, kernel smoothing and recently popular diffusion wavelets.
Various properties and performance of the proposed kernel regression
framework are demonstrated. The method is subsequently applied in in-
vestigating the influence of age and gender on the human amygdala and
hippocampus shapes. We detected a significant age effect on the posterior
regions of hippocampi while there is no gender effect present.

1 Introduction

The end results of many existing surface-based anatomical studies are statistical
parametric maps (SPM) that show statistical significance at each mesh vertex.
To obtain stable and robust SPM, various methods have been proposed. Among
them, diffusion, kernel, and wavelet-based approaches are probably most popu-
lar. Diffusion equations have been widely used in image processing as a form of
noise reduction starting with Perona and Malik in 1990’s [1]. Although numer-
ous techniques have been developed for performing diffusion along surfaces, most
approaches require numerical schemes which are known to suffer various numer-
ical instabilities [2,3]. Kernel based models have been also proposed for surface
and manifolds data [4,3,5]. The kernel approaches basically regress data as the
weighted average of neighboring data using mostly a Gaussian kernel and its
iterative application can approximates the diffusion process. Recently, wavelets
have been popularized for surface and graph data [6,7]. Although diffusion-,
kernel- and wavelet-based methods all look different from each other, it is pos-
sible to develop a unified kernel regression framework that relates all of them in
a coherent mathematical fashion for the first time.

The focus of this paper is on the unification of diffusion-, kernel- and wavelet-
based techniques as a simpler kernel regression problem on manifolds for the
first time. The contributions of this paper are as follows. (i) We show how the
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proposed kernel regression is related to diffusion-like equations. (ii) We establish
the equivalence between the kernel regression and recently popular diffusion
wavelet transform for the first time. This mathematical equivalence bypasses
a need for constructing wavelets on manifolds using a complicated machinery
employed in previous studies [6,7]. Although there have been kernel methods in
machine learning [4], they mainly deal with a linear combination of kernels as a
solution to penalized regressions, which significantly differ from our framework
that does not have any penalty term. The kernel method in the log-Euclidean
framework [5] deals with regressing over manifold data. In this study, we are not
dealing with manifold data but a scalar data defined on a manifold.

As an application, we illustrate how the kernel regression procedure can be
used to localize anatomical signal within the multiple subcortical structures of
the human brain. The proposed surface-based morphometric technique is a sub-
stantial improvement over the voxel-based morphometry study on hippocampus
[8] that projects the statistical results to a surface for interpretation.

2 Kernel Regression and Wavelets on Manifolds

SPD Kernels. Consider a functional measurement f defined on a manifold M ⊂
R

d. We assume the following additive model:

f(p) = h(p) + ε(p), p ∈ M (1)

where h is the unknown signal and ε is a zero-mean random field, possibly
Gaussian. We further assume f ∈ L2(M), the space of square integrable func-
tions on M with the inner product 〈f, g〉 =

∫
M f(p)g(p) dμ(p), where μ is

the Lebesgue measure. Consider a self-adjoint operator L satisfying 〈g1,Lg2〉 =
〈Lg1, g2〉 for all g1, g2 ∈ L2(M). The operator L induces the orthonormal eigen-
values λj and eigenfunctions ψj on M: Lψj = λjψj . Without loss of gener-
ality, we can order the eigenvalues 0 = λ0 ≤ λ1 ≤ · · · . The eigenfunctions
ψj can be numerically computed by solving the generalized eigenvalue prob-
lem [9]. Then any symmetric positive definite (SPD) kernel can be written as
K(p, q) =

∑∞
j=0 τjψj(p)ψj(q) for some τj (Mercer’s theorem). The kernel convo-

lution K ∗ψj(p) =
∫
M K(p, q)ψj(q) dμ(q) can be written as K ∗ψj(p) = τjψj(p).

Therefore, τj and ψj must be the eigenvalues and eigenfunctions of the convo-
lution. For given kernel K, Galerkins method can be used to compute τj .
Kernel Regression. The unknown signal h can be estimated in the subspace
Hk ⊂ L2(M) spanned by the orthonormal basis {ψj}, i.e. Hk = {∑k

j=0 βjψj(p) :
βj ∈ R}. Instead of estimating the function h by finding the closest function in
Hk, which results in the usual Fourier series, we weight the distance with a
positive definite symmetric kernel K:

ĥ(p) = arg min
h∈Hk

∫

M

∫

M
K(p, q)

∣
∣
∣f(q)− h(p)

∣
∣
∣
2

dμ(q) dμ(p). (2)

Without loss of generality, we will assume the kernel to be a probability distri-
bution so that

∫
M K(p, q) dμ(q) = 1 for all p ∈ M. If the kernel is a Dirac-delta
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Fig. 1. The displacement length, its Fourier series expansion using the Laplace-
Beltrami eigenfunctions and the kernel regression with t = 1 for a subject. The strip
patterns visible in the amygdale in the original data and Fourier series are image dis-
cretization artifacts. They actually correspond to image slices passing through them.
In the kernel regression, which is equivalent to diffusion wavelets, such artifacts are
reduced.

function, the kernel regression simply collapses to the usual Fourier series ex-
pansion. We can show that the solution to optimization (2) is analytically given
as

ĥ(p) = arg min
h∈Hk

∫

M

∫

M
K(p, q)

∣
∣
∣f(q)− h(p)

∣
∣
∣
2

dμ(q) dμ(p) =
k∑

j=0

τjfjψj . (3)

(3) generalizes the case of spherical harmonics on a sphere [3] to an arbitrary
manifold. (3) implies that the kernel regression can be done by simply computing
the Fourier coefficients fj = 〈f, ψj〉 without doing messy numerical optimization.

As k → ∞, the kernel regression ĥ =
∑k

j=0 τjfjψj converges to convolutionK∗f
establishing the connection to the kernel smoothing framework [4,3]. Hence,
asymptotically kernel regression should inherit many statistical properties of
kernel smoothing on manifolds.
Heat Diffusion. For an arbitrary self-adjoint differential operator L, the proposed
kernel regression can be shown to be related to the following diffusion-like Cauchy
problem

∂g(p, t)

∂t
+ Lg(p, t) = 0, g(p, t = 0) = f(p), (4)

where the unique solution is given by g(p, t) =
∑∞

j=0 e
−λjtfjψj(p). If we let

τj = e−λjt, the proposed kernel regression ĥ =
∑k

j=0 τjfjψj converges to the so-
lution of diffusion-like equation (4). Further, if we let L be the Laplace-Beltrami
(LB) operator, (4) becomes the isotropic diffusion equation as a special case
and the kernel becomes the heat kernel Ht(p, q) =

∑∞
j=0 e

−λjtψj(p)ψj(q). Fig-
ure 1 shows diffusion like property of the proposed kernel regression with 1000
LB-eigenfunctions and t = 1.
Wavelet Transform. In order to construct wavelets on an arbitrary graph and
mesh, diffusion wavelets have been proposed recently [6,7]. The diffusion wavelet
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construction has been fairly complicated. However, it can be shown to be a spe-
cial case of the proposed kernel regression. Thus its construction is straightfor-
ward than previous thought. For some scale function g that satisfies the admis-
sibility conditions, diffusion wavelet Wt,p(p) at position p and scale t is given

by Wt,q(p) =
∑k

j=0 g(λjt)ψj(p)ψj(q). If we let τj = g(λjt), the diffusion wavelet
transform, or wavelet coefficients, can be written as

〈Wt,p, f〉 =
∫

M
Wt,q(p)f(p) dμ(p) =

k∑

j=0

τjfjψj(q),

which is the exactly kernel regression we introduced. Hence, diffusion wavelet
transform can be simply obtained by doing the kernel regression without a
complicated wavelet machinery [7]. Further, if we let g(λjt) = e−λjt, we have
Wt,p(q) = Ht(p, q), a heat kernel. The bandwidth t of heat kernel controls reso-
lution while the translation is done by shifting one argument in the kernel.

Fig. 2. Gibbs phenomenon is visible in the
Fourier series expansion of the step func-
tion defined on a sphere using SPHARM.
The kernel regression (wavelet coefficients)
shows less visible artifacts.

Although the kernel regression is
constructed using global basis func-
tions, remarkably the kernel regres-
sion at each point p coincides with
the wavelet transform at that point.
Hence, it inherits all the localization
property of wavelets. This is clearly
demonstrated in an example given in
Figure 2, where a step function of
value 1 in the circular band 1/8 <
θ < 1/4 (angle from the north pole)
and of value 0 outside of the band is
constructed. Then the step function
is reconstructed using the Fourier se-
ries expansion using up to degree 78
spherical harmonics (SPHARM). For
the kernel regression, the heat kernel
with the small bandwidth t = 0.0001 is used. SPHARM clearly shows severe
Gibbs phenomenon (ringing artifacts) compared to the kernel regression.

3 Statistical Inference on Manifolds

The proposed kernel regression can be naturally integrated into the random field
theory based statistical inference [9]. Given a collection of functional measure-
ments in (1), we are interested in determining the significance of h in (1), i.e.

H0 : h(p) = 0 for all p ∈ M vs. H1 : h(p) > 0 for some x ∈ M. (5)

Any point p0 that gives h(p0) > 0 is considered as signal. (5) is an infinite dimen-
sional multiple comparisons problem for continuously indexed hypotheses. Given
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T-field T (p) as a test statistic, we need to compute the multiple comparison cor-
rected type-I error of rejecting the null hypothesis (there is signal) when the null
hypothesis is true (there is no signal). For sufficiently high threshold z, which
corresponds to the observed maximum T-statistic value, the corrected type-I

error is given by P
(
supp∈M T (p) > z

)
=

∑d
j=0 μj(M)ρj(z), where μd(M) is

the j-th Minkowski functional of M and ρj is the j-th Euler characteristic (EC)
density of T-field [9] Hippocampus and amygdala surfaces are compact with
no boundary, so the Minkowski functionals are simply μ2(M) = area(M)/2,
μ1(M) = 0 and μ0(M) = χ(M) = 4 × 2, the Euler characteristic of M. The
EC-densities of the T-field with ν degrees of freedom are

ρ0(z) = 1− P (Tν ≤ z), ρ1(z) =
1√
2t2

· 1

2π

(
1 +

z2

ν
)−(ν−1)/2,

ρ2(z) =
1

2t2
· 1

(2π)3/2
Γ (ν+1

2 )

(ν2 )
1/2Γ (ν2 )

z
(
1 +

z2

ν

)−(ν−1)/2

.

Fig. 3. Type-I error plot over bandwidth t
for three different models for the study. As
t increases, the type-I error decreases.

Note that EC-densities has the term
2t2 which relates the scale of wavelets
to p-value directly. In the usual SPM
framework [9], signals are usually con-
volved with a kernel with much larger
bandwidth t effectively masking the
smoothness of noise. Figure 3 shows
the type-I error plot over different
bandwidth t of the kernel regres-
sion. As the bandwidth t decreases,
the type-I error decreases. The opti-
mal bandwidth was selected by check-
ing if the decrease of the type-I er-
ror is statistically significant. Our ap-
proach differs from the usual effective
smoothness approach [9]. When t = 0,
the kernel regression collapse to the
usual Fourier series expansion. Hence,
the kernel regression can be viewed as
having smaller type-I error compared
to the usual Fourier series expansion.

4 Experiments

Implementation. The LB-operator is chosen as the self-adjoint operators L of
choice. We discretized the problem Lψj = λjψj using the Cotan formulation
and solved it as a generalized eigenvalue problem [9]. For the LB-operator, the
heat kernel is the corresponding kernel. Bandwidth t = 1 and k = 1000 number
of basis are chosen for this study. It is algebraically not possible to have more
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Fig. 4. Simulation study II (small SNR) where three black signal regions of different
sizes are taken as the ground truth. All the mesh vertices were assigned value 0. Value
1 was added to the black regions in 30 of measurements, which served as group 2 while
the other 30 measurements were taken as group 1. Then noise |N(0, γ2)| is added to
each vertex. T-statistics results are shown for the simulation (original) and iterated
kernel smoothing [9] and heat kernel regression. Kernel regression performed the best.

basis than the number of vertices in a mesh. The average numbers of mesh
vertices are 1300 for amygdala. Hence, k = 1000 is used to account for possibly
smaller amygdala. The number of eigenfunctions used is more than sufficient to
guarantee relative error less than 0.3% against the ground truth. At degree 1000
expansion, the final statistical results are extremely stable and do not change
much if we add or delete few terms.
Simulations. Simulations with the known ground truths were used to determine
the performance of the proposed method. The type-I error (false positives) can
be quantified in the real data. However, since there is no ground truth in the
real data, the type-II error (false negatives) cant be quantified without additional
assumptions. We performed two simulations with small and large signal-to-noise
ratios (SNR). The both simulations were performed on a small T-junction shaped
surface (Figure 4). Three black signal regions of different sizes were taken as
the ground truth. 60 independent functional measurements on the T-junction
were simulated as |N(0, γ2)|, the absolute value of Gaussian distribution with
mean 0 and variance γ2, at each mesh vertex. Value 1 was added to the black
regions in 30 of measurements which served as group 1 while the remaining 30
measurements were taken as group 2. Then the proposed method is compared
against the original data without any smoothing and often used iterated kernel
smoothing [3]. Two sample t-test with the random field theory based threshold
was used to detect the group difference at 0.05 level.

For study I (large SNR), γ2 = 0.52 and bandwidth σ = 0.1 were used. All
the methods correctly identified the signal regions with almost 100% accuracy
as expected. However, due to the increased sensitivity, heat kernel regression
incorrectly identified 0.9% non-signal regions as signal (false positives), which is
negligible. So it seems for a large SNR setting, all the methods were reasonably
able to detect the correct signal regions without significant error.

For study II (small SNR), γ2 = 22 and bandwidth σ = 0.5 was used. Smaller
SNR requires larger amount of smoothing. In the small SNR setting, iterated
kernel smoothing as well as without any smoothing (original) was not able to
detect any signal regions after multiple comparison corrected thresholding of
4.9. However, kernel regression was able to identify 94% of the signal regions
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Fig. 5. T-statistic and corrected p-value maps on the amygdala/hippocampus template
showing age effect. The posterior regions of the both left and right hippocampi show
age effects at 0.05 level. There is no gender effect present in any structure.

demonstrating superior performance in extremely low SNR setting. Figure 4
shows the simulation results for study II, where the T-statisic values are all
below 4.9 in the two methods, while kernel regression was able to recover most
of the signal regions. Due to its sensitivity, heat kernel regression incorrectly
identified 0.26% non-signal regions as signal but this is negligible. Although we
have shown two extreme cases of high and low SNR, the simulation results are
very robust under the change of different parameters.

5 Application

Imaging Data. The study consists of 3T T1-weighted inverse recovery fast gradi-
ent echo anatomical 3D images, collected in 124 contiguous 1.2-mm axial slices
(TE=1.8 ms; TR=8.9 ms; flip angle = 10◦; FOV = 240 mm; 256 × 256 data
acquisition matrix) of 69 middle age and elderly adults ranging between 38 to 79
years (mean age = 58.0 ± 11.3 years). There are 23 males and 46 females. The
amygdalae and hippocampi were manually segmented by a trained individual
rater in the native space. The segmented volumes did not yield any age or gen-
der effects at 0.05 level. This gives a need for developing a sophisticated surface-
based method. A nonlinear image registration using the diffeomorphic shape and
intensity averaging technique with cross-correlation as similarity metric was per-
formed [10]. The normalized binary masks were then averaged to produce the
template. We used the length of surface displacement vector from the template
to an individual subject as a response variable. Since the length on the template
surface is expected to be noisy due to image acquisition, segmentation and image
registration errors, the proposed kernel regression was performed to reduce the
type-I error. Figure 1 shows an example of kernel regression on our data.
Results. The smoothed displacement Length is regressed over the total brain
volume, age and gender: Length = β1 + β2 · Brain+ β3 · Age+ β4 · Gender+ ε,
where ε is zero mean Gaussian noise. The Age and Gender effects are determined
by testing the significance of parameters β3 and β4 at α = 0.05 using T-statistic
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and corrected for the random field based multiple comparisons. We found the
region of significant effect of age on the posterior part of hippocampi (left: max.
T-stat = 6.25, p-value =0.00014; right: max. T-stat = 4.78, p-value = 0.024)
(Figure 5). Particularly, on the caudal regions of the left and right hippocampi,
we found highly localized age effect. Possibly due t small sample size, no age
effects are detected on the amygdala surface at α = 0.05. No significant gender
effects are detected on amygdale or hippocampi at 0.05 level as well.

6 Conclusion

We have developed a new kernel method that unifies kernel regression, heat
diffusion and wavelets in a single mathematical framework. The kernel regression
is both global and local in a sense it uses global basis functions to perform
regression but locally equivalent to the diffusion wavelet transform. The proposed
framework is demonstrated to perform better than existing methods.
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