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Persistent Homology in Sparse Regression
and Its Application to Brain Morphometry
Moo K. Chung*, Jamie L. Hanson, Jieping Ye, Richard J. Davidson, and Seth D. Pollak

Abstract—Sparse systems are usually parameterized by a
tuning parameter that determines the sparsity of the system.
How to choose the right tuning parameter is a fundamental and
difficult problem in learning the sparse system. In this paper, by
treating the the tuning parameter as an additional dimension,
persistent homological structures over the parameter space is in-
troduced and explored. The structures are then further exploited
in drastically speeding up the computation using the proposed
soft-thresholding technique. The topological structures are further
used as multivariate features in the tensor-based morphometry
(TBM) in characterizing white matter alterations in children who
have experienced severe early life stress and maltreatment. These
analyses reveal that stress-exposed children exhibit more diffuse
anatomical organization across the whole white matter region.
Index Terms—GLASSO, maltreated children, persistent ho-

mology, sparse brain networks, sparse correlations, tensor-based
morphometry.

I. INTRODUCTION

I N the usual tensor-based morphometry (TBM), the spatial
derivatives of deformation fields obtained during nonlinear

image registration for warping individual magnetic resonance
imaging (MRI) data to a template is used in quantifying neu-
roanatomical shape variations [3], [20], [70]. The Jacobian de-
terminant of a deformation field is most frequently used in quan-
tifying the brain tissue growth or atrophy at a voxel level. [20],
[22], [25], [54], [71] used the Jacobian determinant of the de-
formation field as a measure of regional brain change. Sub-
sequently, the statistical parametric maps are obtained by fit-
ting the tensor maps as a response variable in a linear model at
each voxel, which results in a massive number of univariate test
statistics.
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Recently, there have been attempts at explicitly modeling the
structural variation of one region to another [11], [37], [38],
[50], [62], [75], [76] using network approaches. This provides
additional information that complements existing univariate ap-
proaches. In most of these multivariate approaches, anatom-
ical measurements such as mesh coordinates, cortical thickness
or Jacobian determinant across different voxels are correlated
using models such as canonical correlations [4], [62], cross-cor-
relations [11], [37], [38], [50], [75], [76], partial correlations,
which are equivalent to the inverse of covariances [6], [8], [30],
[40], [48]. However, these multivariate techniques suffer the
small-n large-p problem [17], [31], [48], [66], [73]. Specifi-
cally, when the number of voxels are substantially larger than
the number of images, it produces an under-determined linear
model. The estimated covariance matrix is rank deficient and no
longer positive definite. In turn, the resulting correlation matrix
is not considered as a good approximation to the true correlation
matrix.
The small- large- problem can be remedied by using

sparse methods, which regularize the under-determined linear
model with additional sparse penalties. There exist various
sparse models: sparse correlation [17], [48], sparse partial
correlation [8], [40], [48], sparse canonical correlation [4] and
sparse log-likelihood [6], [7], [30], [41], [55], [74]. Sparse
model is usually parameterized by a tuning parameter
that controls the sparsity of the representation. Increasing the
sparse parameter makes the solution more sparse. So far, all
previous sparse network approaches use a fixed parameter
that may not be optimal. Depending on the choice of the sparse
parameter, the final statistical results will be different. Instead
of performing statistical inference at one fixed sparse parameter
that may not be optimal, we introduce a new framework that

performs statistical inferences over the whole parameter space
using persistent homology [12], [17], [18], [27], [32], [46],
[47], [67].
Persistent homology is a recently popular branch of computa-

tional topology with applications in protein structures [64], gene
expression [24], brain cortical thickness [18], activity patterns
in visual cortex [67], sensor networks [23], complex networks
[39] and brain networks [46], [47]. However, as far as we are
aware, it is yet to be applied to sparse models in any context.
This is the first study that introduces persistent homology in
sparse models. The proposed persistent homological framework
is similar to the existing multi-thresholding framework that has
been used in modeling connectivity matrices at many different
thresholds [1], [37], [47], [69]. However, such an approach has
not been applied in sparse networks before. In a sparse network,
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sparsity is controlled by the sparse parameter and the esti-
mated sparse matrix entries. So it is unclear how the existing
multi-thresholding framework can be applicable in this situa-
tion. In this paper, we prove that thresholding the sparse param-
eter is equivalent to thresholding correlations under some con-
ditions. Thus, we resolve the unclarity of applying the existing
multi-threshold method to the sparse networks.
The main methodological contributions of this paper are

as follows. (i) We introduce a new sparse model based on
Pearson correlation. Although various sparse models have been
proposed for other correlations such as partial correlations [8],
[40], [48] and canonical correlations [4], the sparse version of
the Pearson correlation was not often studied.
(ii) We introduce persistent homology in the proposed sparse

model for the first time. We explicitly show that persistent ho-
mological structures can be found in the sparse model. This
paper differs substantially from our previous study [47], which
studies the persistent homology in graphs and networks. Sparse
models and sparse networks were never considered in [47].
(iii) We show that the identification of persistent homological

structures can yield greater computational speed and efficiency
in solving the proposed sparse correlation model without any
numerical optimization. Note that most sparse models require
numerical optimization for minimizing sparse penalty, which
can be a computational bottleneck for solving large scale prob-
lems. There are few attempts at speeding up the computation
for sparse models. By identifying block diagonal structures in
the estimated (inverse) covariance matrix, it is possible to by-
pass the numerical optimization in the penalized log-likelihood
method [55], [74]. LASSO (least absolute shrinkage and selec-
tion operator) can be done without numerical optimization if the
design matrix is orthogonal [72]. The proposed method substan-
tially differs from [55], [74] in that we do not need to assume
the data to follow normality since there is no need to specify
the likelihood function. Further the cost functions we are op-
timizing are different. The proposed method also differs from
[72] in that our problem is not orthogonal.
As an application of the proposed method, we applied the

techniques to the quantification of interregional white matter ab-
normality in stress-exposed children's magnetic resonance im-
ages (MRI). Early and severe childhood stress, such as experi-
ences of abuse and neglect, have been associated with a range
of cognitive deficits [52], [59], [65] and structural abnormali-
ties [35], [36], [42]. However, little is known about the under-
lying biological mechanisms leading to cognitive problems in
these children [60] due to the difficulties in the existing methods
that do not have enough discriminating power. However, we
demonstrate that the proposed method is very well suited to this
problem.

II. METHODS

A. Sparse Correlations

Correlations. Consider measurement vector on node . If
we center and rescale the measurement such that

the sample correlation between nodes and is given by .
Since the data is normalized, the sample covariance matrix is
reduced to the sample correlation matrix.
Consider the following linear regression between nodes and
( ):

(1)

We are correlating data at node to data at node . In this partic-
ular case, is the usual Pearson correlation. The least squares
estimation (LSE) of is then given by

(2)

which is the sample correlation. For the normalized data, the
estimated regression coefficient is exactly the sample correla-
tion. For the normalized and centered data, the regression co-
efficient is the correlation. Equation (2) minimizes the sum of
least squares over all nodes:

(3)

Note that we do not really care about correlating to itself
since the correlation is then trivially .
1) Sparse Correlations: Let be the correlation

matrix. The sparse penalized version of (3) is given by

(4)

The sparse correlation is given by minimizing . By in-
creasing , the estimated correlation matrix becomes more
sparse. When , the sparse correlation is simply given by
the sample correlation, i.e., . As increases, the
correlation matrix shrinks to zero and becomes more sparse.
This sparse regression is not orthogonal, i.e., ,

the Dirac delta, so the existing soft-thresholding method for
LASSO [72] is not applicable. The minimization of (4) can be
done by the proposed soft-thresholding method analytically by
exploiting the topological structure of the problem.
Theorem 1: For , the minimizer of (4) is given by the

soft-thresholding

if
if
if

(5)

Proof: Write (4) as

(6)

where

Since is nonnegative and convex, is minimum if
each component achieves minimum. So we only need to
minimize each component . This differentiates our sparse
correlation formulation from the standard compressed sensing
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or LASSO that cannot be optimized in this component wise
fashion. can be rewritten as

We used the fact
For , the minimum of is achieved when

, which is the usual LSE. For , Since is
quadratic in , the minimum is achieved when

(7)

The sign of depends on the sign of . Thus, sparse correla-
tion is given by a soft-thresholding of :

if
if
if

(8)

Theorem 1 is heuristically introduced in the conference
paper [17]. This paper extends [17] with clearly spelled out
soft-thresholding rule and the detailed proof. The estimated
sparse correlation (8) basically thresholds the sample corre-
lation that is larger or smaller than by the amount . Due
to this simple expression, there is no need to optimize (4)
numerically as often done using the coordinate descent learning
or the active-set algorithm in compressed sensing or LASSO
[30], [58]. Note Theorem 1 is only applicable in a separable
compressed sensing or LASSO type problem.
Since different choices of sparsity parameter will produce

different solutions in sparse model , we propose to use the
collection of all the sparse solutions for many different values of
for the subsequent statistical analysis. This avoids the problem

of using an arbitrary threshold or identifying the optimal sparse
parameter that may not be optimal in practice. The question is
then how to use the collection of in a coherent mathemat-
ical fashion. For this, we propose to apply persistent homology
[26], [46], [47] and establish Theorem 2.

B. Persistent Homology in Graphs
Using persistent homology, topological features such as the

connected components and cycles of a graph can be tabulated in
terms of the Betti numbers. The Betti numbers and , which
are topological invariants, respectively denote the number of
connected components and holes in the graph [27]. The net-
work difference is then quantified using the Betti numbers of
the graph [46], [47]. The graph filtration is a new graph simpli-
fication technique that iteratively builds a nested subgraphs of
the original graph. The algorithm simplifies a complex graph by
piecing together the patches of locally connected nearest nodes.
The process of graph filtration is related to the single linkage
hierarchical clustering and dendrogram construction [46], [47].
Consider a weighted graph with node set

and edge weights , where is the weight between
nodes and . Weighted graph is formed by the pair
of node set and edge weights . The edge weights in many
brain imaging applications are usually given by some similarity
measures such as correlation or covariance between nodes [46],

[51], [56], [57], [68]. Given weighted network , we
induce binary network by thresholding the weighted net-
work at . The adjacency matrix of is defined
as

if ;
otherwise.

(9)

Any edge weight less than or equal to is made into zero while
edge weight larger than is made into one. The binary network

is a simplicial complex consisting of 0-simplices (nodes)
and 1-simplices (edges), a special case of the Rips complex [32].
Then it can be seen that for in a
sense the vertex and edge sets of are contained in those of

. Just as in the case of Rips filtration, which is a collection
of nested Rips complexes, we can construct the filtration on the
collection of binary networks:

(10)

for . Note that is the complete
weighted graph while is the node set . By increasing the
value, we are thresholding at higher correlation so more edges

are removed. Such the nested sequence of the Rips complexes
(10) is called a Rips filtration, the main object of interest in per-
sistent homology [26]. The sequence of values are called the
filtration values. Since we are dealing with a special case of Rips
complexes restricted to graphs, we will call such structure graph
filtration. Fig. 1 illustrates an example of a graph filtrationwith 4
nodes. Sequentially we are deleting edges based on the ordering
of the edge weights. Since the graph filtration is a special case
of the Rips filtration, it inherits all the topological properties of
the Rips filtration. Given a weighted graph, there are infinitely
many different filtrations. In Fig. 1 example, we have two fil-
trations and

among many other possibilities.
So a question naturally arises if there is a unique filtration that
can be used in characterizing the graph. Let the level of a filtra-
tion be the number of nested unique sublevel sets in the given
filtration.
Theorem 2: For graph with unique positive

edge weights, the maximum level of a filtration on the graph is
. Further, the filtration with filtration level is unique.
Proof: For a graph with nodes, the maximum number of

edges is , which is obtained in a complete graph. If
we order the edge weights in the increasing order, we have the
sorted edge weights:

where . The subscript denotes the order
statistic. For all , is the complete graph
of . For all ,

. For all , , the vertex set.
Hence, the filtration given by

(11)

is maximal in a sense that we cannot have any additional level
of filtration.
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Fig. 1. Schematic of graph filtration. We start with a weighted graph (top left).
We sort the edge weights in an increasing order. We threshold the graph at fil-
tration value and obtain unweighted binary graph based on rule (9). The
thresholding is performed sequentially by increasing values. Then we obtain
the sequence of nested graphs such as . The
collection of such nested graph is defined as a graph filtration. The dotted lines
are thresholded edges. The first Betti number , which counts the number of
connected components, is then plotted over the filtration.

The condition of having unique edge weights is not restric-
tive in practice. Assuming edge weights to follow some contin-
uous distribution, the probability of any two edges being equal is
zero. Among many possible filtrations, we will use the maximal
filtration (11) in the study since it is uniquely given. The finite-
ness and uniqueness of the filtration levels over finite graphs are
intuitively clear by themselves and are already applied in soft-
ware packages such as javaPlex. [2]. However, we still need a
rigorous statement to specify the type of filtration we are using.

C. Persistent Homology in Sparse Regression

We introduce a persistent homological structure in sparse cor-
relations now as follows. Let be the adjacency
matrix obtained from sparse correlation (8):

if ;
otherwise.

Let be the graph defined by the adjacency matrix . Then
we have the main result of this paper, which relies on the results
of Theorem 1 and Theorem 2.
Theorem 3: For centered and normalized data

, be the order statistic of edge
weights . Then graph
obtained from the sparse regression (4) forms the maximal
graph filtration

(12)

Proof: The proof follows by simplifying the adjacencyma-
trix into a simpler but equivalent adjacencymatrix .
From (8), if and 0 otherwise. Thus,
the adjacency matrix is equivalent to the adjacency matrix

:

if ;
otherwise.

(13)

Fig. 2. Comparison between the sparse correlation estimation via numerical
optimization (top) and the proposed soft-thresholding method in Theorem
3 (bottom). The direct numerical optimization makes the graph sparse by
shrinking the edge weights to zero. Nonzero edges form binary graph . The
persistent homological approach thresholds the sample correlations at given
filtration value and construct binary graph . The both methods produce the
identical binary graphs, i.e., . If the methods are applied at two different
parameters , 0.4, we obtain nested binary graphs
and . Theorem 3 generalizes this example.

Let be the graph defined by adjacency matrix . Graph
is formed by thresholding edge weights given by the abso-

lute value of sample correlations . From Theorem 2, such
graph must have maximal filtration:

(14)

Since , graph also must have the identical maximal
filtration.
Theorem 3 is illustrated in Fig. 2 with a 4-nodes example. In

this study, much larger and nodes will be
used. In obtaining the topological structure of a graph induced
by sparse correlation, it is not necessary to solve the sparse re-
gression by the direct optimization, which can be very time con-
suming. Identical topological information can be obtained by
performing the soft-thresholding on the sample correlations.
The resulting maximal filtration can be quantified by plot-

ting the change of Betti numbers over increasing filtration
values [27], [32], [46]. The first Betti number counts
the number of connected components of the given graph

at the filtration value [47]. Given graph filtration
, we plot the first Betti num-

bers over filtration values
(Fig. 1). The number of connected com-

ponents increase as the filtration value increases. The pattern
of increasing number of connected components visually show
how the topology of the graph changes over different parameter
values. The overall pattern of Betti (number) plots can be used
as a summary measure of quantifying how the graph changes
over increasing edge weights. The Betti number plots are re-
lated but different from barcodes in literature. The Betti number
is equal to the number of bars in the barcodes at the specific
filtration value. To construct Betti plots, it is not necessary to
perform filtrations for infinitely many possible values. From
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Theorem 2, the maximum possible number of filtration level
for plotting the Betti numbers is one plus the number of unique
edge weights. For a tree, which is a graph with no cycle, we
can come up with a much stronger statement than this.
Theorem 4: For a tree with nodes and unique positive

edge weights , the plot for the first
Betti number ( ) corresponding to the maximal graph filtration
is given by the coordinates

Proof: For a tree with nodes, there are total edges.
Then from Theorem 2, we have the maximal filtration

(15)

Since all the edge weights are above filtration value ,
all the nodes are connected, i.e., . Since no edge
weight is above the threshold , . At each
time we threshold an edge, the number of components increases
exactly by one in the tree. Thus, we have

For a general graph, it is not possible to analytically deter-
mine the coordinates for its Betti-plot. The best we can do is
to compute the number of connected components numeri-
cally using the single linkage dendrogram method (SLD) [47],
the Dulmage-Mendelsohn decomposition [16], [61] or existing
simplical complex approach [12], [23], [27]. For our study, we
used the SLD method.

D. Statistical Inference on Betti Number Plots
The first Betti number will be used as features for character-

izing network differences statistically. We assume there are
subjects and nodes in Group 1. For subject , we have mea-
surement at node . Denote data matrix as , where

is the measurement for subject at node .We then construct
a sparse network and corresponding Betti number using
. Thus, is a function of . Consider another Group 2

consists of subjects. For Group 2, data matrix is denoted as
, where is the measurement for subject at node .

Group 2 will also generate single Betti number plot as a
function of . We are then interested in testing if the shapes of
Betti number plots are different between the groups. This can be
done by comparing the areas under the Betti plots. So the null
hypothesis of interest is

(16)

while the alternate hypothesis is

This inference avoids the use of multiple comparisons. The
null hypothesis (16) is related to the following pointwise null
hypothesis:

(17)

If the hypothesis (17) is true, the hypothesis (16) is also true (but
inverse is not true). Thus, testing the area under the curve is re-
lated to testing the height of the curve at every point. The advan-
tage of using the area under the curve is that we do not need to
worry about multiple comparisons associated with testing (17).
The area under the curve seems a reasonable approach to use for
Betti-plots. A similar approach has been introduced in [14] in
removing the multiple comparisons and produce a single sum-
mary test statistic.
There is no prior study on the statistical distribution on the

Betti numbers so it is difficult to construct a parametric test pro-
cedure. Further, since there is only one Betti-plot per group, it is
necessary to empirically construct the null distribution and de-
termine the -value by resampling techniques such as the per-
mutation test and jackknife [15], [17], [28], [47]. For this study,
we use the jackknife resampling.
For Group 1 with subjects, one subject is removed at a

time and the remaining subjects are used in constructing
a network and a Betti-plot. Let be the data matrix, where
the -th row (subject) is removed from . Then for each -th
subject removed, we compute , which is a function
of and . Repeating this process for each subject, we
obtain Betti-plots . For Group
2, the -th row (subject) is removed from the original data
matrix and obtain data matrix as . For each -th subject
removed, we compute , which is a function of and

. Repeating this process for each subject, we obtain
Betti-plots . There are 23 mal-
treated and 31 control children in the study, so we have 23 and
31 Jackknife resampled Betti-plots. Subsequently we compute
the areas under the Betti-plots by discretizing the integral.
The area differences between the groups are then tested using
the Wilcoxon rank-sum test, which is a nonparametric test on
median differences [33].
We did not use the permutation test. For the permutation test

to converge for our data set, it requires tens of thousands permu-
tations and it is really time consuming even with the proposed
time-saving soft-thresholding method. The proposed method
takes about a minute of computation in a desktop but ten-thou-
sands permutations will take about seven days of computation.
Hence, we used a much simpler Jackknife resampling tech-
nique. The procedure is validated using the simulation with the
known ground truth. The MATLAB codes for constructing net-
work filtration, barcodes and performing statical inference on
are given in http://brainimaging.waisman.wisc.edu/~chung/bar-
codes with the post-processed Jacobian determinant and FA
data that were used for this study.
1) Simulations: We performed two simulations. In each sim-

ulation, the sample sizes are in Group 1 and
in Group 2. There are nodes. In Group 1, data at
node for subject is simulated as independent standard normal

for the both simulations.
2) Study1 (No Group Difference): In Group 2, we simulated

data at node for subject as . Small
noise is added to perturb Group 1 data a little bit. It
is expected there is no group difference. Following the proposed
framework, we constructed the sparse correlation networks and
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Fig. 3. Simulation study 2. Left: the simulated correlation matrix for Group 2, where the first 5 nodes are connected (white square). Group 1 has no connection.
Middle: The resulting -plot showing group differences. Right: Leave-one-out Jackknife resampled -plots of Group 1(solid line) and Group 2 (dotted line).
The rank-sum test is performed on the area differences under -curves between the groups ( ). The statistically significant result corresponds to
the horizontal gap in the Betti numbers after filtration value 0.7.

constructed a Betti-plot. Then performed the Jackknife resam-
pling and constructed 20 Betti-plots in each group. The rank
sum test was applied and obtained the -value of 0.78. So we
could not detect any group difference as expected.
3) Study 2 (Group Difference): We first simulate data as

independently for all the nodes. Then
for four nodes indexed by , 3, 4, 5, we introduce ad-
ditional dependency: We added
small noise to perturb the node values further. This dependency
gives any connection between 1 to 5 to have high correlation.
Fig. 3 shows the simulated correlation matrix. Following the
proposed framework, we constructed the sparse correlation net-
works and constructed a Betti-plot. Then performed the Jack-
knife resampling and constructed 20 Betti-plots in each group.
The rank sum test was applied and obtained the -value less than
0.001. This significance corresponds to the horizontal gap be-
tween the Betti-plots after the filtration value 0.7 (Fig. 3 right).

III. APPLICATION

A. Imaging Data Set and Preprocessing
The study consists of 23 children who experienced docu-

mented maltreatment early in their lives, and 31 age-matched
normal control (NC) subjects. Additional details on subjects
can be found in [35], [60]. All the children were recruited and
screened at the University of Wisconsin. The maltreated chil-
dren were raised in institutional settings, where the quality of
care has been documented as falling below the standard neces-
sary for healthy human development. For the controls, we se-
lected children without a history of maltreatment from families
with similar current socioeconomic statuses. The exclusion cri-
teria include, among many others, abnormal IQ ( ), con-
genital abnormalities (e.g., Down syndrome or cerebral palsy)
and fetal alcohol syndrome (FAS). The average age for mal-
treated children was years while that of controls
was years. This particular age range is selected
since this development period is characterized by major regres-
sive and progressive brain changes [35], [49]. There are 10 boys
and 13 girls in the maltreated group and 18 boys and 13 girls in
the control group. Groups did not differ on age, pubertal stage,
sex, or socio-economic status [35]. The average amount of time

TABLE I
STUDY PARTICIPANT CHARACTERISTICS

spent in institutional care by children was ,
with a range from 3 months to 5.4 years. Children were on av-
erage when they adopted, with a range
of 3 months to 7.7 years. Table I summarizes the participant
characteristics.
T1-weighted MRI were collected using a 3T General Electric

SIGNA scanner (Waukesha, WI), with a quadrature birdcage
head coil. DTI were also collected in the same scanner using a
cardiac-gated, diffusion-weighted, spin-echo, single-shot, EPI
pulse sequence. The details on image acquisition parameters
are given in [35]. Diffusion tensor encoding was achieved using
twelve optimum non-collinear encoding directions with a diffu-
sion weighting of 1114 and a non-DW T2-weighted ref-
erence image. Other imaging parameters were ,
3 averages (NEX: magnitude averaging), and an image acqui-
sition matrix of 120 120 over a field of view of 240 240

. The acquired voxel size of 2 2 3 mm was interpo-
lated to 0.9375 mm isotropic dimensions (256 256 in plane
imagematrix). Tominimize field inhomogeneity and image arti-
facts, high order shimming and fieldmap images were collected
using a pair of non-EPI gradient echo images at two echo times:

and .
For MRI, a study specific template was constructed using the

diffeomorphic shape and intensity averaging technique through
Advanced Normalization Tools (ANTS) [5]. Image normaliza-
tion of each individual image to the template was done using
symmetric normalization with cross-correlation as the similarity
metric. The 1 mm resolution inverse deformation fields are then
smoothed out with Gaussian kernel with bandwidth ,
which is equivalent to the full width at half maximum (FWHM)
of 4 mm. Then the Jacobian determinants of the inverse de-
formations from the template to individual subjects were com-
puted at each voxel. The Jacobian determinants measure the
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Fig. 4. 548 uniformly sampled nodes along the white matter surface where the
sparse correlations and covariances are computed. The nodes are sparsely sam-
pled on the template surface to guarantee there is no spurious high correlation
due to proximity between nodes. Color scales are the Jacobian determinant of
a subject. The same nodes are taken in both MRI and DTI for comparison be-
tween the two modalities.

amount of voxel-wise change from the template to the indi-
vidual subjects. White matter was also segmented into tissue
probability maps using template-based priors, and registered
to the template [9]. For DTI, images were corrected for eddy
current related distortion and head motion via FSL software
(http://www.fmrib.ox.ac.uk/fsl) and distortions from field inho-
mogeneities were corrected using custom software based on the
method given in [43] before performing a non-linear tensor es-
timation using CAMINO [21]. Subsequently, we have used it-
erative tensor image registration strategy for spatial normaliza-
tion [44], [78]. Then fractional anisotropy (FA) were calculated
for diffusion tensor volumes diffeomorphically registered to the
study specific template.

B. Results: Proposed Sparse Correlation
We thresholded the white matter density at 0.7 and obtained

the isosurface. The resulting isosurface is not the gray and white
matter tissue boundary and it is located inside the white matter.
We are interested in the white matter changes along the tissue
boundary. The surface mesh has 189536 mesh vertices and the
average inter-nodal distance of 0.98 mm. Since Jacobian deter-
minant and FA values at neighboring voxels are highly corre-
lated, 0.3% of the total mesh vertices are uniformly sampled to
produce . This gives average inter-nodal distance
of 15.7 mm, which is large enough to avoid spurious high corre-
lation between two adjacent nodes (Fig. 4). The isosurface of the
white matter template was extracted using the marching cube
algorithm [53]. The number of nodes are still larger than most
region of interest (ROI) approaches inMRI and DTI, which usu-
ally have around 100 regions [77]. This resulted in 548 548
sample covariances and correlation matrices, which are not full
rank. We constructed the proposed sparse correlation based net-
work filtrations from the soft-thresholdingmethod (Fig. 5). Sub-
sequently, Betti-plots are computed (Fig. 6). Since each group
produces one Betti-plot, the leave-one-out Jackknife resampling
technique was performed to produce 23 and 31 resampled Betti-
plots respectively for the two groups. We then computed the
areas under the Betti-plots. Using the rank-sum test, we detected
the statistical significance of the area differences between the
groups ( ). The Betti-plots for normal controls
show much higher Betti numbers at any given threshold.

1) Biological Interpretation: In the Betti-plots (Fig. 6), we
obtain more disconnected components for controls than for chil-
dren in the early stress group for any specific value. It can
only happen if Jacobian determinants have higher correlations
in the maltreated children across the white matter voxels com-
pared to the controls. So when thresholded at a specific correla-
tion value, more edges are preserved in the maltreated children
resulting in more connected components. Thus, the children ex-
posed to early life stress and maltreatment showmore dense net-
work at a given value. This is clearly demonstrated visually in
Fig. 5. If the variations of Jacobian determents are similar across
voxels, we would obtain higher correlations. This suggests more
anatomical homogeneity across whole brain white matter re-
gions in the maltreated children. Our finding is consistent with
the previous study on neglected children that shows disrupted
white matter organization, which results in more diffuse con-
nections between brain regions [35]. Lower white matter direc-
tional organization in white matter may correspond to the in-
creased homogeneity of Jacobian determinants and FA-values
across the brain regions. Similar experiences may cause some
areas to be connected to other regions of the brain at a higher
degree inducing higher homogeneity in the regions. This type
of relational interpretation cannot be obtained from the tradi-
tional univariate TBM.

C. Comparison Against Sparse Covariance

We compared the performance of the proposed sparse cor-
relation technique to the widely used penalized log-likelihood
method [6], [7], [30], [41], [55], where the log-likelihood is reg-
ularized with a sparse penalty:

(18)

is the covariance matrix and is the sample co-
variance matrix. is the sum of the absolute values of the
elements. The penalized log-likelihood is maximized over the
space of all possible symmetric positive definite matrices. Equa-
tion (18) is a convex problem and it is numerically optimized
using the graphical-LASSO (GLASSO) algorithm [6], [7], [30],
[41]. The tuning parameter controls the sparsity of the
off-diagonal elements of the covariance matrix. By increasing

, the estimated covariance matrix becomes more sparse.
We also performed the graph filtration technique to the esti-

mated sparse covariance matrix . Let be
the adjacency matrix defined from the estimated sparse covari-
ance:

if ;
otherwise.

(19)

The adjacency matrix induces graph consisting of
number of partitioned subgraphs:

(20)

where and are vertex and edge sets of the subgraph
respectively. Unlike the sparse correlation case, we do not have
full persistency on the induced graph . The partitioned graphs
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Fig. 5. Networks obtained by thresholding sparse correlations for the Jacobian determinant from MRI and fractional anisotropy (FA) from DTI at different
values ( , 0.7, 0.8) for 548 nodes (left three columns) 1856 nodes (right three columns). The collection of the thresholded graphs forms a filtration. The

children exposed to early life stress and maltreatment show more dense network at the given value. Since the maltreated children are more homogenous in the
white matter region, there are more dense high correlations between nodes. The over all pattern of dense connections in the maltreated children is similar between
the networks of different node sizes and across the different imaging modalities.

can be proven to be partially nested in a sense that only the
partitioned node sets are persistent [17], [41], [55], i.e.,

(21)

for and all . Subsequently the collection
of partitioned vertex set is also persistent.
On the other hand, edge sets may not be persistent.
From (21), it is unclear if there exists a unique maximal fil-

tration on the vertex set. The maximal filtration can be obtained
as follows. Let be another adjacency matrix given
by

if ;
otherwise.

(22)

where is the sample covariance matrix. It can be shown that
the adjacency matrix similarly induces graph [17], [55]:

(23)

for some edge set . Further, the subgraphs and have
identical vertex set but different edge sets. Then from Theorem
2, we have maximal filtration on the graph , where the edge
weights are given by the sample covariances. Theorem 2 re-
quires the edge weights to be all unique, which is satisfied for
the study data set. Then similar to Theorem 3, the Betti-plots are
determined by ordering the entries of the sample covariance ma-
trices. The resulting barcode is displayed in Fig. 6. The sparse
covariance was also able to discriminate the groups statistically
( ). The changes in the first Betti number are
occurring in a really narrow window but was still able to detect
the group differences using the areas under the Betti number
plots (Fig. 6). However, the sparse correlations exhibit slower
changes in the Betti number over the wide window, making it
easier to discriminate the groups.

D. Comparison Against Fractional Anisotropy in DTI
For children who suffered early stress, white matter mi-

crostructures have been reported as more diffusely organized
[35]. Therefore, we predicted less white matter variability
in both the Jacobian determinants and FA-values. The DTI
acquisitions were done in the same 3T GE SIGNA scanner;
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Fig. 6. The Betti-plots on the sparse covariance and the proposed sparse correlation for Jacobian determinant (left column) and FA (right column) on 548 (top
two rows) and 1856 (bottom two rows) node studies. Unlike the sparse covariance, the sparse correlation seems to shows huge group separation between normal
and stress-exposed children visually. However, in all 7 cases except top right (548 nodes covariance for FA), we detected statistically significant differences using
the rank-sum test on the areas under the Betti-plots ( ). The shapes of Betti-plots are consistent between the studies with different node sizes
indicating the robustness of the proposed method over changing number of nodes.

acquisition parameters can be found in [35]. We applied the pro-
posed persistent homological method in obtaining the filtrations
for sparse correlations and covariances in the same 548 nodes
on FA values (Fig. 4). The resulting filtration patterns show
similar patterns of a rapid increase in disconnected components
for sparse correlations (Figs. 5 and 6). The Jackknife resam-
pling followed by the rank-sum test on the area differences
shows a significant group difference for sparse correlations
( ). These results are due to a consistent ab-
normality among the stress-exposed children that is observed
in both MRI and DTI modalities. The stress-exposed children
exhibited stronger white matter homogeneity and less spatial
variability compared to normal controls in both MRI and DTI
measurements. However, the covariance results fail to discrim-
inate the groups at 0.01 level ( ) indicative of a
poor performance compared to the sparse correlation method.

E. Robustness on Node Size Changes
Depending on the number of nodes, the parameters of graph

vary considerably up to 95% and the resulting statistical results

will change substantially [29], [34], [77]. On the other hand,
the proposed method is very robust under the change of node
size. For the node sizes between 548 and 1856 (0.3% and 1% of
original 189536 mesh vertices), the choice of node size did not
affect the pattern of graph filtrations, the shape of Betti-plots,
or the subsequent statistical results significantly. For example,
the graph filtration on 1856 nodes shows a similar pattern of
dense connections for the maltreated children (Fig. 5). The re-
sulting Betti-plots also show similar pattern of the group sep-
aration (Fig. 6). The statistical results are also somewhat con-
sistent. For both the Jacobian determinant and FA values, the
group differences in Betti-plots obtained from sparse correla-
tions and covariances are all statistically significant (

) in both 548 and 1856 nodes except one case. For the
case of the 548 nodes covariance on FA values, we did not de-
tect any group differences at 0.01 level ( ).
On the other hand, we detected the group difference for the
1856 nodes case at 0.001 level. The proposed framework is
very sensitive, so it can detect really narrow but very consistent
Betti-plot differences.
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Fig. 7. The displacement vector field from the template to individual brain is
randomly perturbed. Then the Jacobian determinants are correlated across 548
nodes and Betti-plots are subsequently produced. The process is repeated five
times to produce five perturbed Betti-plots. The thick line is without any per-
turbation. The perturbed Betti-plots are very stable and close to the Betti-plots
without any perturbation (thick lines). The proposed topological framework is
very robust under sufficiently large image misalignment. Right figure is the en-
largement of the left figure.

F. Effect of Image Registration

We checked how much impact image registration has on the
robustness of the proposed method. Anatomical measurements
across neighboring voxels are highly correlated within white
matter so we do not expect image misalignment will have much
effect on the final results. To determine the variability associ-
ated with the image registration, the displacement vector fields
from the template to individual brains were randomly perturbed
by adding Gaussian noise to each component. This is
sufficiently large noise and causes up to 4 mm misalignment for
some nodes. Then following the proposed pipeline, the Jacobian
determinants are correlated across 548 nodes and Betti-plots
are computed. Fig. 7 shows five perturbation results. The thick
line is without any perturbation. The perturbed Betti-plots are
very stable and close to the Betti-plots without any perturbation
(thick lines). Th height differences in the perturbed Betti-plots
are less than 4.4% in average, which is negligible in the sub-
sequent statistical analysis. In fact, the resulting -values are
similar to each other and all the perturbed results detected the
group difference ( ). Thus, we conclude that
the proposed topological framework is robust under image mis-
alignment.

IV. CONCLUSIONS AND DISCUSSIONS

By identifying persistent homological structures in sparse
correlations, we were able to exploit them for drastically
speeding up computations. A procedure that takes 56 hours
was completed in few seconds without utilizing additional
computational resources. Although we have only shown how to
identify persistent homology in the sparse Pearson correlation,
the underlying principle can be directly applicable to other
sparse models and image filtering techniques. These include
the least angle regression (LARS) implementation in more
general LASSO [13], heat kernel smoothing [19], and diffusion
wavelets [45], which all guarantee the nested subset structures
over the sparse parameters and kernel bandwidth. We will leave
the identification of persistent homology in other models for
future studies.

We found that Betti-plots on correlations can visually dis-
criminate better than Betti-plots on covariances. In Fig. 6,
almost all topological changes associated with the covariance
occur in really small range between 0 and 0.1. However, unlike
covariances, correlations are normalized by the variances so
the topological changes are more spread out between 0 and 1.
This has the effect of making the Betti-plots shape differences
spread out more uniformly and wide in the unit interval. This
is most clearly demonstrated in the covariance vs. correlation
on FA (second column). The Betti-plots of covariances are
difficult to discriminate visually because the Betti-plots are
squeezed into small range between 0 and 0.1 but the Betti-plots
of correlations are more discriminative since the Betti-plots are
more spread out. The visual discriminative power comes from
the normalization associated with the Pearson correlation. The
change in the metric affects the filtration process itself since it
is based on the sorted edge weights. Subsequently, the shape of
Betti-plots and the statistical inference results also change.
While massive univariate approaches can detect signal lo-

cally at each voxel, the proposed network approach can de-
tect signal globally over the whole brain region. Even though
the information obtained by the two methods are complemen-
tary, they are somewhat exclusive. The proposed approach tabu-
lates the changes of the number of connected components in the
thresholded networks via Betti-plots, which cannot be done at
individual node level. There is no easy straightforward way of
combining or comparing the results from the two methods. The
Betti-plots is a global index that is defined over a whole graph so
it is not directly applicable to node-level analysis. However, just
like any global graph theoretic indices such as small-worldness
and modularity [10], [63], it can be applied to subgraphs around
a given node. This is the beyond the scope of the paper and we
left it as future research.
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