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In this chapter, we review widely used statistical analysis frameworks for data defined along
cortical and subcortical surfaces that have been developed in last two decades. The cerebral
cortex has the topology of a 2D highly convoluted sheet. For data obtained along curved
non-Euclidean surfaces, traditional statistical analysis and smoothing techniques based on
the Euclidean metric structure are ine�cient. To increase the signal-to-noise ratio (SNR)
and to boost the sensitivity of the analysis, it is necessary to smooth out noisy surface data.
However, this requires smoothing data on curved cortical manifolds and assigning smoothing
weights based on the geodesic distance along the surface. Thus, many cortical surface data
analysis frameworks are di↵erential geometric in nature [2]. The smoothed surface data is
then treated as smooth random fields and statistical inferences can be performed within
Keith Worsley’s random field theory [3, 4].

The methods described in this chapter are illustrated with the hippocampus surface
data set published in [5]. Using this case study, we will determine if there is an e↵ect of
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family income on the growth of hippocampus in children in detail. There are a total of 124
children and 82 of them have repeat magnetic resonance images (MRIs) two years later.

9.1 Introduction

The cerebral cortex has the topology of a 2D convoluted sheet. Most of the features that
distinguish these cortical regions can only be measured relative to the local orientation of
the cortical surface [6]. As the brain develops over time, cortical surface area expands and
its curvature changes [2]. It is equally likely that such age-related changes with respect to
the cortical surface are not uniform [7, 8]. By measuring how geometric features such as the
cortical thickness, curvature and local surface area change over time, statistically significant
brain tissue growth or loss in the cortex can be detected locally at the vertex level.

The first obstacle in performing surface-based data analysis is a need for extracting corti-
cal surfaces from MRI volumes. This requires correcting MRI field inhomogeneity artifacts.
The most widely used technique is the nonparametric nonuniform intensity normalization
method (N3) developed at the Montreal neurological institute (MNI), which eliminates the
dependence of the field estimate on anatomy [9]. The next step is the tissue classification
into three types: gray matter, white matter and cerebrospinal fluid (CSF). This is critical
for identifying the tissue boundaries where surface measurements are obtained. An artificial
neural network classifier [10, 11] or Gaussian mixture models [12] can be used to segment
the tissue types automatically. The Statistical Parametric Mapping (SPM) package1 uses a
Gaussian mixture with a prior tissue density map.

After the segmentation, the tissue boundaries are extracted as triangular meshes. In
order to triangulate the boundaries, the marching cubes algorithm [13], level set method
[14], the deformable surfaces method [15] or anatomic segmentation using proximities (ASP)
method [16] can be used. Brain substructures such as the brain stem and the cerebellum are
usually automatically removed in the process. The resulting triangular mesh is expected to
be topologically equivalent to a sphere. For example, the triangular mesh resulted from the
ASP method consists of 40,962 vertices and 81,920 triangles with the average internodal
distance of 3 mm. Figure 9.1 shows a representative cortical mesh obtained from ASP.
Surface measurements such as cortical thickness can be automatically obtained at each
mesh vertex. Subcortical brain surfaces such as amygdala and hippocampus are extracted
similarly, but often done in a semi-automatic fashion with the marching cubes algorithm
on manual edited subcortical volumes. In the hippocampus case study, the left and right
hippocampi were manually segmented in the template using the protocol outlined in [17].

Comparing measurements defined across di↵erent cortical surfaces is not trivial due
to the fact that no two cortical surfaces are identically shaped. In comparing measure-
ments across di↵erent 3D whole brain images, 3D volume-based image registration such
as Advanced Normalization Tools (ANTS) [1] is needed. However, 3D image registration
techniques tend to misalign sulcal and gyral folding patterns of the cortex. Hence, 2D
surface-based registration is needed in order to match measurements across di↵erent corti-
cal surfaces. Various surface registration methods have been proposed [18, 2, 19, 20, 21, 22].
Most methods solve a complicated optimization problem of minimizing the measure of
discrepancy between two surfaces. A much simpler spherical harmonic representation tech-
nique provide a simple way of approximately matching surfaces without time-consuming
numerical optimization [2].

1The SPM package is available at www.fil.ion.ucl.ac.uk/spm.



Statistical Analysis on Brain Surfaces 235

FIGURE 9.1
Left: The outer cortical brain surface mesh consisting of 81,920 triangles. Measurements are
defined at mesh vertices. Right: The part of the mesh is enlarged to show the convoluted
nature of the surface.

Surface registration and the subsequent surface-based analysis usually require parame-
terizing surfaces. It is natural to assume the surface mesh to be a discrete approximation
to the underlying cortical surface, which can be treated as a smooth 2D Riemannian mani-
fold. Cortical surface parameterization has been done previously in [19, 23, 2]. The surface
parameterization also provides surface shape features such as the Gaussian and mean curva-
tures, which measure anatomical variations associated with the deformation of the cortical
surface during, for instance, development and aging [6, 24, 23, 2].

9.2 Surface Parameterization

In order to perform statistical analysis on a surface, parameterization of the surface is of-
ten required [2]. Brain surfaces are often mapped onto a plane or a sphere. Then surface
measurements defined on mesh vertices are also mapped onto the new domain and an-
alyzed. However, almost all surface parameterizations su↵er metric distortions, which in
turn influence the spatial covariance structure so it is not necessarily the best approach.

We model the cortical surface M as a smooth 2D Riemannian manifold parameterized
by two parameters u1 and u2 such that any point x 2 M can be represented as

X(u1, u2) = {x1(u
1, u2), x2(u

1, u2), x3(u
1, u2) : (u1, u2) 2 D ⇢ R2}

for some parameter space u = (u1, u2) 2 D ⇢ R2 [25, 26, 7, 27]. The aim of the parameter-
ization is estimating the coordinate functions x1, x2, x3 as smoothly as possible.

Both global and local parameterizations are available. A global parameterization, such
as tensor B-splines and spherical harmonic representation, are computationally expensive
compared to a local surface parameterization. A local surface parameterization in the neigh-
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borhood of point x = (x1, x2, x3) can be obtained via the projection of the local surface
patch onto the tangent plane T

x

(M) [2, 23].

9.2.1 Local Parameterization by Quadratic Polynomial

A local parameterization is usually done by fitting a quadratic polynomial of the form

X(u1, u2) = �1u
1 + �2u

2 + �3(u
1)2 + �4u

1u2 + �5(u
2)2 (9.1)

in (u1, u2) 2 D ⇢ R2. The data can be centered so there is no constant term in the
quadratic form (9.1) [2]. The coe�cients �

i

are usually estimated by the least squares
method [23, 28, 2].

In estimating various di↵erential geometric measures such as the Laplace-Beltrami op-
erator or curvatures, it is not necessary to find global surface parameterization of M. Local
surface parameterization such as the quadratic polynomial fit is su�cient to obtain such
geometric quantities [2]. The drawback of the polynomial parameterization is that there is
a tendency to weave the outermost mesh vertices to find vertices in the center. Therefore
this is not advisable to directly fit (9.1) when one of the coordinate values rapidly changes.

9.2.2 Surface Flattening

Parameterizing cortical and subcortical surfaces with respect to simpler algebraic surfaces
such as a unit sphere is needed to establish a standard coordinate system. However, poly-
nomial regression type of local parameterization is ill-suited for this purpose. For the global
surface parameterization, we can use surface flattening [29, 30], which is nonparametric in
nature. The surface flattening parametrizes a surface by either solving a partial di↵erential
equation or optimizing its variational form.

Deformable surface algorithms naturally provide one-to-one maps from cortical surfaces
to a sphere since the algorithm initially starts with a spherical mesh and deforms it to match
the tissue boundaries [16]. The deformable surface algorithms usually start with the second
level of triangular subdivision of an icosahedron as the initial surface. After several iterations
of deformation and triangular subdivision, the resulting cortical surface contains very dense
triangle elements. There are many surface flattening techniques such as conformal mapping
[30, 31, 32] quasi-isometric mapping [33], area preserving mapping [34], and the Laplace
equation method [2].

For many surface flattening methods to work, the starting binary object has to be close
to star-shape or convex. For shapes with a more complex structure, the methods may create
numerical singularities in mapping to the sphere. Surface flattening can destroy the inherent
geometrical structure of the cortical surface due to the metric distortion. Any structural or
functional analysis associated with the cortex can be performed without surface flattening
if the intrinsic geometric method is used [2].

9.2.3 Spherical Harmonic Representation

The spherical harmonic (SPHARM) representation 2 is a widely used subcortical surface
parameterization technique [35, 2, 36, 31, 37, 38]. SPHARM represents the coordinates of
mesh vertices as a linear combination of spherical harmonics. SPHARM has been mainly
used as a data reduction technique for compressing global shape features into a small number
of coe�cients. The main global geometric features are encoded in low degree coe�cients

2The SPHARM package is available at
www.stat.wisc.edu/⇠mchung/softwares/weighted-SPHARM/weighted-SPHARM.html
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while the noise are in high degree spherical harmonics [31]. The method has been used to
model various subcortical structures such as ventricles [36], hippocampi [38] and cortical
surfaces [35]. The spherical harmonics have a global support. So the resulting spherical
harmonic coe�cients contain the global shape features and it is not possible to directly
obtain local shape information from the coe�cients only. However, it is still possible to
obtain local shape information by evaluating the representation at each fixed vertex, which
gives the smoothed version of the coordinates of surfaces. In this fashion, SPHARM can
be viewed as mesh smoothing [35, 39]. In this section, we present a brief introduction of
SPHARM within a Hilbert space framework.

Suppose there is a bijective mapping between the cortical surface M and a unit sphere
S2 obtained through a deformable surface algorithm [2]. Consider the parameterization of
S2 by

X(✓,') = (sin ✓ cos', sin ✓ sin', cos ✓),

with (✓,') 2 [0,⇡)⌦ [0, 2⇡). The polar angle ✓ is the angle from the north pole and the az-
imuthal angle ' is the angle along the horizontal cross-section. Using the bijective mapping,
we can parameterize functional data f with respect to the spherical coordinates

f(✓,') = g(✓,') + ✏(✓,'), (9.2)

where g is a unknown smooth coordinate function and ✏ is a zero mean random field, possibly
Gaussian. The error function ✏ accounts for possible mapping errors. The unknown signal g
is then estimated in the finite subspace of L2(S2), the space of square integrable functions
in S2, spanned by spherical harmonics in the least squares fashion [35].

Previous imaging and shape modeling literature have used the complex-valued spherical
harmonics [40, 36, 31, 38]. In practice, however, it is su�cient to use only real-valued
spherical harmonics [41, 42], which is more convenient in setting up a real-valued stochastic
model (9.2). The relationship between the real- and complex-valued spherical harmonics
is given in [43, 42]. The complex-valued spherical harmonics can be transformed into real-
valued spherical harmonics using an unitary transform.

The spherical harmonic Y
lm

of degree l and order m is defined as

Y
lm

=

8
><

>:

c
lm

P
|m|
l

(cos ✓) sin(|m|'), �l  m  �1,
clmp

2
P

|m|
l

(cos ✓), m = 0,

c
lm

P
|m|
l

(cos ✓) cos(|m|'), 1  m  l,

where c
lm

=
q

2l+1
2⇡

(l�|m|)!
(l+|m|)! and Pm

l

is the associated Legendre polynomial of orderm [41, 44],

which is given by

Pm

l

(x) =
(1� x2)m/2

2ll!

dl+m

dxl+m

(x2 � 1)l, x 2 [�1, 1].

The first few terms of the spherical harmonics are

Y00 =
1p
4⇡

, Y1,�1 =

r
3

4⇡
sin ✓ sin',

Y1,0 =

r
3

4⇡
cos ✓, Y1,1 =

r
3

4⇡
sin ✓ cos'.

The spherical harmonics are orthonormal with respect to the inner product

hf1, f2i =

Z

S

2

f1(⌦)f2(⌦) dµ(⌦),
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where ⌦ = (✓,') and the Lebesgue measure dµ(⌦) = sin ✓d✓d'. The norm is then defined
as

||f1|| = hf1, f1i1/2. (9.3)

The unknown mean function g is estimated by minimizing the integral of the squared
residual in H

k

, the space spanned by up to k-th degree spherical harmonics:

bg(⌦) = arg min
h2Hk

Z

S

2

���f(⌦)� h(⌦)
���
2
dµ(⌦). (9.4)

It can be shown that the minimization is given by

bg(⌦) =
kX

l=0

lX

m=�l

hf, Y
lm

iY
lm

(⌦), (9.5)

the Fourier series expansion. The expansion (9.5) has been referred to as the spherical
harmonic representation [35, 36, 31, 38, 45]. This technique has been used in representing
various brain subcortical structures such as hippocampi [38] and ventricles [36] as well as the
whole brain cortical surfaces [35, 31]. By taking each component of Cartesian coordinates of
mesh vertices as the functional signal f , surface meshes can be parameterized as a function
of ✓ and '.

The spherical harmonic coe�cients can be estimated in least squares fashion. However,
for an extremely large number of vertices and expansions, the least squares method may
be di�cult to directly invert large matrices. Instead, the iterative residual fitting (IRF)
algorithm [35] can be used to iteratively estimate the coe�cients by partitioning the larger
problem into smaller subproblems. The IRF algorithm is similar to the matching pursuit
method [46]. The IRF algorithm was developed to avoid the computational burden of in-
verting a large linear problem while the matching pursuit method was originally developed
to compactly decompose a time-frequency signal into a linear combination of a pre-selected
pool of basis functions. Although increasing the degree of the representation increases the
goodness-of-fit, it also increases the number of estimated coe�cients quadratically. So it is
necessary to stop the iteration at the specific degree k, where the goodness-of-fit and the
number of coe�cients balance out. This idea was used in determining the optimal degree
of SPHARM [35].

The limitation of SPHARM is that it produces the Gibbs phenomenon, i.e., ringing arti-
facts, for discontinuous and rapidly changing continuous measurements [35, 47]. The Gibbs
phenomenon can be e↵ectively removed by weighting the spherical harmonic coe�cients
exponentially smaller, which makes the representation smooth out rapidly changing signals.
The weighted version of SPHARM is related to isotropic di↵usion smoothing [29, 48, 2, 18]
as well as the di↵usion wavelet transform [35, 39, 49].

9.3 Surface Registration

To construct a test statistic locally at each vertex across di↵erent surfaces, one must register
the surfaces to a common template surface. Nonlinear cortical surface registration is often
performed by minimizing objective functions that measure the global fit of two surfaces while
maximizing the smoothness of the deformation in such a way that the cortical gyral or sulcal
patterns are matched smoothly [18, 50, 19]. There is also a much simpler way of aligning
surfaces using SPHARM representation [35]. Before any sort of nonlinear registration is
performed, an a�ne registration is performed to align and orient the global brain shapes.
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9.3.1 A�ne Registration

Anatomical objects extracted from 3D medical images are aligned using a�ne transfor-
mations to remove the global size di↵erences. A�ne registration requires identifying cor-
responding landmarks either manually or automatically. The a�ne transform T of point
p = (p1, · · · , pd)0 2 Rd to q = (q1, · · · , qd)0 is given by

q = Rp+ c,

where the matrix R corresponds to rotation, scaling and shear while c corresponds to trans-
lation. Although the a�ne transform is not linear, it can be made into a linear form by
augmenting the transform. The a�ne transform can be rewritten as

✓
q
1

◆
=

✓
R c

0 · · · 0 1

◆✓
p
1

◆
. (9.6)

Let

A =

✓
R c

0 · · · 0 1

◆
.

Trivially, A is linear a linear operator. The matrix A is the most often used form for recording
the a�ne registration.

Let p
i

be the i-th landmark and its corresponding a�ne transformed points q
i

. Then
we rewrite (9.6) as

�
q1 · · · q

n

�
| {z }

Q

=
�
R c

�✓ p1 · · · p
n

1 · · · 1

◆

| {z }
P

.

Then the least squares estimation is given as
⇣

bR bc
⌘
= QP 0(PP 0)�1.

Then the points p
i

are mapped to bRp
i

+ bc, which may not coincide with q
i

in general. In
practice, landmarks are automatically identified from T1-weighted MRI.

9.3.2 SPHARM Correspondence

Using SPHARM, it is possible to approximately register surfaces with di↵erent mesh topol-
ogy without any optimization. The crude alignment can be done by coinciding the first order
ellipsoid meridian and equator in the SPHARM representation [36, 51]. However, this can
be improved. Consider SPHARM representation of surface H = (h1, h2, h3) with spherical
angles ⌦ given by

h
i

(⌦) =
kX

l=0

lX

m=�l

hi

lm

Y
lm

(⌦),

where (v1, v2, v3) are the coordinates of mesh vertices and SPHARM coe�cient hi

lm

=
hv

i

, Y
lm

i. Consider another SPHARM representation J = (j1, j2, j3) obtained from mesh
coordinate w

i

:

j
i

(⌦) =
kX

l=0

lX

m=�l

wi

lm

Y
lm

(⌦),

where wi

lm

= hw
i

, Y
lm

i. Suppose the surface h
i

is deformed to h
i

+ d
i

by the amount of
displacement d

i

. We wish to find d
i

that minimizes the discrepancy between h
i

+ d
i

and
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FIGURE 9.2
The displacement vector fields of registering from the hippocampus template to two in-
dividual surfaces. The displacement vector field is obtained from the di↵eomorphic image
registration [1]. The variability in the displacement vector field can be analyzed using a
multivariate general linear model [2].

j
i

in the subspace H
k

spanned using up to the k-th degree spherical harmonics. It can be
shown that

arg min
di2Hk

���
��� bh

i

+ d
i

� bj
i

���
��� =

kX

l=0

lX

m=�l

(wi

lm

� vi
lm

)Y
lm

(⌦). (9.7)

This implies that the optimal displacement of matching two surfaces is obtained by simply
taking the di↵erence between two SPHARM and matching coe�cients of the same degree
and order. Then a specific point bh

i

(⌦) in one surface corresponds to bj
i

(⌦) in the other
surface. We refer to this point-to-point surface matching as the SPHARM correspondence
[35]. Unlike other surface registration methods [18, 50, 19], it is not necessary to consider an
additional cost function that guarantees the smoothness of the displacement field since the
displacement field d = (d1, d2, d3) is already a linear combination of smooth basis functions.

9.3.3 Di↵eomorphic Registration

Di↵eomorphic image registration is a recently popular technique for registering volume
and surface data [1, 52, 53, 54, 55]. From the a�ne transformed individual surfaces M

j

,
an additional nonlinear surface registration to the template using the large deformation
di↵eomorphic metric mapping (LDDMM) framework can be performed [52, 53, 54, 55].
In LDDMM, given the template surface M, the di↵eomorphic transformations, which are
one-to-one, smooth forward, and inverse transformation, are constructed as follows. We es-
timate the di↵eomorphism d between them as a smooth streamline given by the Lagrangian
evolution:

@d

@t
(x, t) = v � d(x, t)

with d(x, 0) = x, t 2 [0, 1] for time-dependent velocity field v. Note the surfaces M
j

and
M are the start and end points of the di↵eomorphism, i.e. M

j

� d(·, 0) = M
j

and M
j

�
d(·, 1) = M. By solving the evolution equation numerically, we obtain the di↵eomorphism.
By averaging the inverse deformation fields from the template M to individual subjects,
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we may obtain yet another final more refined template. The vector fields v are constrained
to be su�ciently smooth to generate di↵eomorphic transformations over finite time [56].
Figure 9.2 shows the resulting displacement vector fields of warping from the template
to two hippocampal surfaces. In the deformation-based morphometry, variability in the
displacement is used to characterize surface growth and di↵erences [2].

9.4 Cortical Surface Features

The human cerebral cortex has the topology of a 2D highly convoluted grey matter shell
with an average thickness of 3 mm [2, 16]. The outer boundary of the shell is called the
outer cortical surface while the inner boundary is called the inner cortical surface. Various
cortical surface features such as curvatures, local surface area and cortical thickness have
been used in quantifying anatomical variations. Among them, cortical thickness has been
more often analyzed than other features.

9.4.1 Cortical Thickness

Once we extract both the outer and inner cortical surface meshes, cortical thickness can be
computed at each mesh vertex. The cortical thickness is defined as the distance between the
corresponding vertices between the inner and outer surfaces [16]. There are many di↵erent
computational approaches in measuring cortical thickness. In one approach, the vertices
on the inner triangular mesh are deformed to fit the outer surface by minimizing a cost
function that involves bending, stretch and other topological constraints [2]. There is also
an alternate method for automatically measuring cortical thickness based on the Laplace
equation [57].

The average cortical thickness for each individual is about 3 mm [58]. Cortical thickness
varies from 1 to 4 mm depending on the location of the cortex. In normal brain develop-
ment, it is highly likely that the change of cortical thickness may not be uniform across
the cortex. Since di↵erent clinical populations are expected to show di↵erent patterns of
cortical thickness variations, cortical thickness has also been used as a quantitative index
for characterizing a clinical population [18]. Cortical thickness varies locally by region and
is likely to be influenced by aging, development and disease [59]. By analyzing how cortical
thickness varies between clinical and non-clinical populations, we can locate regions on the
brain related to a specific pathology.

9.4.2 Surface Area and Curvatures

As in the case of local volume changes in the deformation-based morphometry, the rate of
cortical surface area expansion or reduction may not be uniform across the cortical surface
[2]. Suppose that cortical surface M is parameterized by the parameters u = (u1, u2) such
that any point x 2 M can be written as x = X(u). Let X

i

= @X/@ui be the partial
derivative vectors. The Riemannian metric tensor g

ij

is then given by the inner product
between two vectors X

i

and X
j

, i.e.

g
ij

(t) = hX
i

,X
j

i.
The tensor g

ij

measures the amount of the deviation of the cortical surface from a flat
Euclidean plane and can be used to measure lengths, angles and areas on the cortical
surface.
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Let g = (g
ij

) be a 2 ⇥ 2 matrix of metric tensors. The total surface area of the cortex
M is then given by Z

D

p
det g du,

where D = X�1(M) is the parameter space [27]. The term
p
det g is called the surface

area element and it measures the transformed area of the unit square in the parameter
space D via transformation X : D ! M. The surface area element can be considered as
the generalization of the Jacobian determinant, which is used in measuring local volume
changes in the tensor-based morphometry [2].

Instead of using the metric tensor formulation, it is possible to quantify local surface
area change in terms of the areas of the corresponding triangles in surface meshes. However,
this formulation assigns the computed surface area to each face instead of each vertex. This
causes a problem in both surface-based smoothing and statistical analysis, where values are
required to be given on vertices. Interpolating scalar values on vertices from face values
can be done by the weighted average of face values. It is not hard to develop surface-
based smoothing and statistical analysis on face values, as a form of dual formulation,
but the cortical thickness and the curvature metric are defined on vertices so we end up
with two separate approaches: one for metrics defined on vertices and the other for metrics
defined on faces. Therefore, the metric tensor approach provides a better unified quantitative
framework for the subsequent statistical analysis.

The principal curvatures characterize the shape and location of the sulci and gyri, which
are the valleys and crests of the cortical surfaces [60, 23, 28]. By measuring the curvature
changes, rapidly folding and cortical regions can be localized. The principal curvatures 1
and 2 can be represented as functions of �

i

in quadratic surface (9.1) [25, 27].

9.4.3 Gray Matter Volume

Local volume can be computed using the determinant of the Jacobian of deformation and
used in detecting the regions of brain tissue growth and loss in brain development [2].
Compared to the local surface area change, the local volume change measurement is more
sensitive to small deformation of the brain. If a unit cube increases its sides by one, the
surface area will increase by 22 � 1 = 3 while the volume will increase by 23 � 1 = 7.
Therefore, the statistical analysis based on the local volume change is at least twice more
sensitive compared to that of the local surface area change. So the local volume change
should be able to pick out gray matter tissue growth patterns even when the local surface
area change may not.

The gray matter can be considered as a thin shell bounded by two surfaces with varying
cortical thickness. In most deformable surface algorithms like FreeSurfer, each triangle on
the outer surface has a corresponding triangle on the inner surface. Let p1,p2,p3 be the
three vertices of a triangle on the outer surface and q1,q2,q3 be the corresponding three
vertices on the inner surface such that p

i

is linked to q
i

. Then the volume of the triangular
prism is given by the sum of the determinants

D(p1,p2,p3,q1) +D(p2,p3,q1,q2) +D(p3,q1,q2,q3)

where

D(a,b, c,d) = | det(a� d,b� d, c� d)|/6
is the volume of a tetrahedron whose vertices are {a,b, c,d}. Afterwards, the total gray
matter volume can be estimated by summing the volumes of all triangular prisms [2].
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9.5 Surface Data Smoothing

Cortical surface mesh extraction and cortical thickness computation are expected to in-
troduce noise [18, 61, 16]. To counteract this, surface-based data smoothing is necessary
[29, 62, 48, 2]. For 3D whole brain volume data, Gaussian kernel smoothing is desirable in
many statistical analyses [63, 64]. Gaussian kernel smoothing weights neighboring obser-
vations according to their 3D Euclidean distance. Specifically, Gaussian kernel smoothing
of functional data or image f(x),x = (x1, . . . , xn

) 2 Rn with full width at half maximum
(FWHM) = 4(ln 2)1/2

p
t is defined as the convolution of the Gaussian kernel with f :

F (x, t) =
1

(4⇡t)n/2

Z

Rn

e�(x�y)2/4tf(y)dy. (9.8)

However, due to the convoluted nature of the cortex, whose geometry is non-Euclidean, we
cannot directly use the formulation (9.8) on the cortical surface. For data that lie on a 2D
surface, smoothing must be weighted according to the geodesic distance along the surface,
which is not straightforward [29, 2, 65].

9.5.1 Di↵usion Smoothing

By formulating Gaussian kernel smoothing as a solution of a di↵usion equation on a Rieman-
nian manifold, the Gaussian kernel smoothing approach can be generalized to an arbitrary
curved surface. This generalization is called di↵usion smoothing and was first introduced in
the analysis of fMRI data on the cortical surface [29] and cortical thickness [65] in 2001.

It can be shown that Gaussian kernel smoothing (9.8) is the integral solution of the
n-dimensional di↵usion equation

@F

@t
= �F (9.9)

with the initial condition F (x, 0) = f(x), where

� =
@2

@x2
1

+ · · ·+ @2

@x2
n

is the Laplacian in n-dimensional Euclidean space. Hence the Gaussian kernel smoothing is
equivalent to the di↵usion of the initial data f(x) after time t.

Di↵usion equations have been widely used in image processing as a form of noise re-
duction starting with Perona and Malik in 1990 [66]. Numerous di↵usion techniques have
been developed for surface data smoothing [29, 2, 48, 62, 18, 67]. When applying di↵usion
smoothing on curved surfaces, the smoothing somehow has to incorporate the geometri-
cal features of the curved surface and the Laplacian � should change accordingly. The
extension of the Euclidean Laplacian to an arbitrary Riemannian manifold is called the
Laplace-Beltrami operator [68, 27]. The approach taken in [29] is based on a local flattening
of the cortical surface and estimating the planar Laplacian, which may not be as accurate
as the cotan estimation based on the finite element method (FEM) given in [65]. Further,
the FEM approach completely avoids the use of surface flattening and parameterization;
thus, it is more robust.

For given Riemannian metric tensor g
ij

, the Laplace-Beltrami operator � is defined as

�F =
X

i,j

1

|g|1/2
@

@ui

⇣
|g|1/2gij @F

@uj

⌘
, (9.10)
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FIGURE 9.3
A typical triangulation in the neighborhood of p = p0 in a surface mesh.

where (gij) = g�1 [68]. Note that when g becomes an identity matrix, the Laplace-Beltrami
operator reduces to the standard 2D Laplacian:

�F =
@2F

@(u1)2
+

@2F

@(u2)2
.

Using FEM on the triangular cortical mesh, it is possible to estimate the Laplace-Beltrami
operator as the linear weights of neighboring vertices using the cotan formulation, which is
first given in [65].

Let p1, · · · ,pm

be m neighboring vertices around the central vertex p = p0 (Figure
9.3). Then the estimated Laplace-Beltrami operator is given by

d�F (p) =
mX

i=1

w
i

�
F (p

i

)� F (p)
�

(9.11)

with the weights

w
i

=
cot ✓

i

+ cot�
iP

m

i=1 kTi

k ,

where ✓
i

and �
i

are the two angles opposite to the edge connecting p
i

and p, and kT
i

k is
the area of the i-th triangle (Figure 9.3).

FEM estimation (9.11) is an improved formulation from the previous attempt in di↵usion
smoothing [29], where the Laplacian is simply estimated as the planar Laplacian after locally
flattening the triangular mesh consisting of nodes p0, · · · ,pm

onto a flat plane. Afterwards,
the finite di↵erence (FD) scheme can be used to iteratively solve the di↵usion equation at
each vertex p:

F (p, t
n+1)� F (p, t

n

)

t
n+1 � t

n

= b�F (p, t
n

),

with the initial condition F (p, 0) = f(p) and fixed �t = t
n+1 � t

n

. After N iterations, the
FD gives the di↵usion of the initial data f after time N�t. If the di↵usion were applied to
Euclidean space, it would be approximately equivalent to Gaussian kernel smoothing with

FWHM = 4(ln 2)1/2
p
N�t.
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For large meshes, computing the linear weights for the Laplace-Beltrami operator takes a fair
amount of time, but once the weights are computed, it is applied repeatedly throughout the
iterations as a matrix multiplication. Unlike Gaussian kernel smoothing, di↵usion smoothing
is an iterative procedure.

9.5.2 Iterated Kernel Smoothing

Di↵usion smoothing use FEM and FD, which are known to su↵er numerical instability if
su�ciently small step size is not chosen in the forward Euler scheme. To remedy the problem
associated with di↵usion smoothing, iterative kernel smoothing3 was introduced [18]. The
method has been used in smoothing various cortical surface data: cortical curvatures [69, 70],
cortical thickness [71, 72], hippocampus [73, 74], magnetoencephalography (MEG) [75] and
functional-MRI [76, 77]. This and its variations are probably the most widely used method
for smoothing brain surface data at this moment. In iterated kernel smoothing, kernel
weights are spatially adapted to follow the shape of the heat kernel in a discrete fashion.

The n-th iterated kernel smoothing of signal f 2 L2(M) with kernel K
�

is defined as

K(n)
�

⇤ f(p) = K
�

⇤ · · · ⇤K
�| {z }

n times

⇤f(p),

where � is the bandwidth of the kernel. If K
�

is a heat kernel, we have the following iterative
relation [18]:

K
�

⇤ f(p) = K
(n)
�/n

⇤ f(p). (9.12)

The relation (9.12) shows that kernel smoothing with large bandwidth � can be decomposed
into n repeated applications of kernel smoothing with smaller bandwidth �/n. This idea
can be used to approximate the heat kernel. When the bandwidth is small, the heat kernel
behaves like the Dirac-delta function and, using the parametrix expansion [78, 79], we can
approximate it locally using the Gaussian kernel.

Let p1, · · · ,pm

be m neighboring vertices of vertex p = p0 in the mesh. The geodesic
distance d(p,p0) between p and its adjacent vertex p

i

is the length of edge between these
two vertices in the mesh. Then the discretized and normalized heat kernel is given by

W
�

(p,p
i

) =
exp

�� d(p,pi)
2

4�

�

P
m

j=0 exp
�� d(p�pj)2

4�

� .

Note
P

m

i=0 W�

(p,p
i

) = 1. For small bandwidth, all the kernel weights are concentrated
near the center, so we only need to worry about the first neighbors of a given vertex in
a surface mesh. The discrete version of heat kernel smoothing on a triangle mesh is then
given by

W
�

⇤ f(p) =
mX

i=0

W
�

(p, p
i

)f(p
i

).

The discrete kernel smoothing should converge to heat kernel smoothing as the mesh resolu-
tion increases. This is the form of the Nadaraya-Watson estimator [80] in statistics. Instead
of performing a single kernel smoothing with large bandwidth n�, we perform n iterated

kernel smoothing with small bandwidth � as follows W (n)
�

⇤ f(p).
3MATLAB package: www.stat.wisc.edu/⇠mchung/softwares/hk/hk.html.
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9.5.3 Heat Kernel Smoothing

The recently proposed heat kernel smoothing4 framework constructs the heat kernel analyt-
ically using the eigenfunctions of the Laplace-Beltrami operator [81]. This method avoids
the need for the linear approximation used in iterative kernel smoothing that compounds
the approximation error at each iteration. The method represents isotropic heat di↵usion
analytically as a series expansion so it avoids the numerical convergence issues associated
with solving the di↵usion equations numerically [29, 2, 67]. This technique is di↵erent from
other di↵usion-based smoothing methods in that it bypasses the various numerical problems
such as numerical instability, slow convergence, and accumulated linearization error.

Although recently there have been a few studies that introduce heat kernel in computer
vision and machine learning [82], they mainly use heat kernel to compute shape descrip-
tors [83, 84] or to define a multi-scale metric [85]. These studies did not use heat kernel in
smoothing functional data on manifolds. Further, most kernel methods in machine learn-
ing deal with the linear combination of kernels as a solution to penalized regressions, which
significantly di↵ers from the heat kernel smoothing framework, which does not have a penal-
ized cost function. There are log-Euclidean and exponential map frameworks on manifolds,
where the main interest is in computing the Fréchet mean along the tangent space [86, 87].
Such approaches or related methods in [88], the Nadaya-Watson type of kernel regression is
reformulated to learn the shape or image means in a population. In the heat kernel smooth-
ing framework, we are not dealing with manifold data but scalar data defined on a manifold,
so there is no need for exploiting the manifold structure of the data itself.

Let � be the Laplace-Beltrami operator on M. Solving the eigenvalue equation

� 
j

= �� 
j

, (9.13)

we order eigenvalues
0 = �0 < �1  �2  · · · ,

and corresponding eigenfunctions  0, 1, 2, · · · [78, 18, 89, 90]. The eigenfunctions  j

form
an orthonormal basis in L2(M), the space of square integrable functions in M. Figure 9.4
shows the first four LB-eigenfunctions on a hippocampal surface.

There is extensive literature on the use of eigenvalues and eigenfunctions of the Laplace-
Beltrami operator in medical imaging and computer vision [89, 91, 92, 93, 94, 95]. The
eigenvalues have been used in caudate shape discriminators [96]. Qiu et al. used eigenfunc-
tions in constructing splines on cortical surfaces [91]. Reuter used the topological features
of eigenfunctions [93]. Shi et al. used the Reeb graph of the second eigenfunction in shape
characterization and landmark detection in cortical and subcortical structures [97, 90]. Lai
et al. used the critical points of the second eigenfunction as anatomical landmarks for colon
surfaces [98].

Using the eigenfunctions, heat kernel K
�

(p, q) is defined as

K
�

(p, q) =
1X

j=0

e��j� 
j

(p) 
j

(q), (9.14)

where � is the bandwidth of the kernel. The heat kernel is the generalization of a Gaussian
kernel. Then heat kernel smoothing of functional measurement Y is defined as

K
�

⇤ Y (p) =
1X

j=0

e��j��
j

 
j

(p), (9.15)

4MATLAB package: brainimaging.waisman.wisc.edu/⇠chung/lb.
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FIGURE 9.4
Schematic of hat kernel smoothing on a hippocampal surface. Given a noisy functional data
on the surface, the Laplace-Beltrami eigenfunctions  

j

are computed and their exponentially
weighted Fourier coe�cients exp��

j

� are multiplied as a form a regression. This process
smoothes out the noisy functional signal with bandwidth �.

where �
j

= hY, 
j

i are Fourier coe�cients [18]. Kernel smoothing K
�

⇤ Y is taken as the
estimate for the unknown mean signal ✓. The degree for truncating the series expansion can
be automatically determined using the forward model selection procedure [35]. Figure 9.4
shows the heat kernel smoothing results with the bandwidth � = 0.5 and k = 500 number
of LB-eigenfunctions.

Unlike previous approaches to heat di↵usion [29, 2, 67, 99], heat kernel smoothing avoids
the direct numerical discretization of the di↵usion equation. Instead, we discretize the basis
functions of given manifold M by solving for the eigensystem (9.13) and obtain �

j

and
 
j

. This provides more robust stable smoothing results compared to di↵usion smoothing or
iterated kernel smoothing approaches.

9.6 Statistical Inference on Surfaces

Surface measurements such as cortical thickness, curvatures, or fMRI responses can be
modeled as random fields on the cortical surface:

Y (x) = µ(x) + ✏(x), x 2 M, (9.16)

where the deterministic part µ is the unknown mean of the observed functional measurement
Y and ✏ is a mean zero random field. The functional measurements on the brain surface is
often modeled using the general linear models (GLMs) or its multivariate version. Various
statistical models are proposed for estimating and modeling the signal component µ(x) [23,
2, 35] but the majority of the methods are all based on GLM. GLMs have been implemented
in the brain image analysis packages such as SPM and fMRISTAT5.

5The fMRISTAT package is available at www.math.mcgill.ca/keith/fmristat.
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9.6.1 General Linear Models

We set up a GLM at each mesh vertex. Let y
i

be the response variable, which is mainly com-
ing from images and x

i

= (x
i1, · · · , xip

) to be the variables of interest and z
i

= (z
i1, · · · , zik)

to be nuisance variables corresponding to the i-th subject. Assume there are n subjects, i.e.,
i = 1, · · · , n. We are interested in testing the significance of variables x

i

while accounting
for nuisance covariates z

i

. Then we set up GLM

y
i

= z
i

�+ x
i

� + ✏
i

where � = (�1, · · · ,�k)0 and � = (�1, · · · ,�p)0 are unknown parameter vectors to be esti-
mated. We assume ✏ to be the usual zero mean Gaussian noise, although the distributional
assumption is not required for the least squares estimation. We test hypotheses

H0 : � = 0 vs. H1 : � 6= 0.

Subsequently the inference is done by constructing the F -statistic with p and n � p � k
degrees of freedom. GLMs have been used in quantifying cortical thickness, for instance, in
child development [2, 18] and amygdala shape di↵erences in autism [2].

In the hippocampus case study, the first T1-weighted MRI scans are taken at 11.6± 3.7
years for n = 124 children using a 3T GE SIGNA scanner. Variables age and gender

are available. We also have variable income, which is a binary dummy variable indicating
whether the subjects are from high- or low-income families. A total of 124 children and
adolescents are from high- (> 75000$; n = 86) and low-income (< 35000$, n = 38) parents
respectively. In addition to this cross-sectional data, longitudinal data was available for 82
of these subjects (n = 66, > 75000$; n = 16, < 35000$). The second MRI scan was acquired
for these 82 subjects about 2 years later at 14 ± 3.9 years. For now, we will simply ignore
the correlation between the scans within a subject and will treat them as independent.

On the template surface, we have the displacement vector fields of mapping from the
template to individual subjects (Figure 9.2). We take the length of the surface displace-
ment, denoted as deformation, with respect to the template as the response variable. The
displacement measures the shape di↵erence with respect to the template. However, since
the length measurement is noisy, surface-based smoothing is necessary. We have used heat
kernel smoothing to smooth out noise with the bandwidth 1 and 500 LB-eigenfunctions.
Then we set up the GLM:

deformation = �1 + �2age+ �1income+ ✏

and test for the significance of �1 at each mesh vertex. Figure 9.5-left shows the F -statistic
result on testing �1.

9.6.2 Multivariate General Linear Models

The multivariate general linear models (MGLMs) have been also used in modeling mul-
tivariate imaging features on brain surfaces. These models generalize a widely used
univariate GLM by incorporating vector valued responses and explanatory variables
[100, 101, 3, 102, 103, 2]. Hotelling’s T 2 statistic is a special case of MGLM that has
been used primarily for inference on surface shapes, deformations and multi-scale features
[104, 2, 105, 106, 107, 108]. An example of this approach is Hotelling’s T 2-statistic applied in
determining the 3D brain morphology of HIV/AIDS patients [109]. Hotelling’s T 2-statistic
is also applied to 2D deformation tensor at each mesh vertex on the hippocampal surface
as a way to characterize Alzheimers diseases [110].

Suppose there are a total of n subjects and p multivariate features of interest at each
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FIGURE 9.5
F -statistics maps on testing the significant hippocampus shape di↵erence on the income
level while controlling for age and gender. The arrows show the deformation di↵erences
between the groups (high income � low income). The fixed-e↵ects result (left) is obtained
by treating the repeat scans as independent. The mixed-e↵ects result (right) is obtained
by explicating modeling the covariance structure of the repeat scans with a subject. Both
results are not statistically significant under multiple comparisons even at 0.1 level.

voxel. For MGLM to work, n should be significantly larger than p. Let J
n⇥p

= (J
ij

) be the
measurement matrix, where J

ij

is the measurement for subject i and for the j-th feature.
The subscripts denote the dimension of the matrix. All the measurements over subjects for
the j-th feature are denoted as x

j

= (J1j , · · · , Jnj)0. The measurement vector for the i-th
subject is denoted as y

i

= (J
i1, · · · , Jip)0. yi

is expected to be distributed identically and
independently over subjects. Note that

J = (x1, · · · ,xp

) = (y1, · · · ,yn

)0.

We may assume the covariance matrix of y
i

to be

Cov(y1) = · · · = Cov(y
n

) = ⌃
p⇥p

= (�
kl

).

With these notations, we now set up the following MGLM at each mesh vertex:

J
n⇥p

= X
n⇥k

B
k⇥p

+ Z
n⇥q

G
q⇥p

+U
n⇥p

⌃1/2
p⇥p

. (9.17)

X is the matrix of contrasted explanatory variables while B is the matrix of unknown coe�-
cients. Nuisance covariates are in matrix Z and the corresponding coe�cients are in matrix
G. The components of Gaussian random matrix U are independently distributed with zero
mean and unit variance. Symmetric matrix ⌃1/2 is the square root of the covariance ma-
trix accounting for the spatial dependency across di↵erent voxels. In MGLM (9.17), we are
usually interested in testing hypotheses

H0 : B = 0. vs. H1 : B 6= 0.

The parameter matrices in the model are estimated via the least squares method. The
multivariate test statistics such as Lawley-Hotelling trace or Roy’s maximum root are used
to test the significance of B. When there is only one voxel, i.e. p = 1, these multivariate
test statistics collapse to Hotelling’s T 2 statistic [102, 2].



250

9.6.3 Small-n Large-p Problems

GLM are usually fitted in each voxel separately. Instead of fitting GLM at each voxel, one
may be tempted to fit the model in the whole brain surface. For FreeSurfer meshes, we need
to fit GLM over 300000 vertices, which causes the small-n large-p problem [101, 111, 112].

Let y
j

be the measurement vector at the j-th vertex. Assume there are n subjects and
total p vertices in the surface. We have the same design matrix Z for all p vertices. Then
we need to estimate the parameter vector �

j

in

y
j

= Z�
j

(9.18)

for each j. Instead of solving (9.18) separately at each vertex, we combine all of them
together so that we have matrix equation

[y1, · · · ,ym

]| {z }
Y

= Z [�1, · · · ,�m

]| {z }
⇤

. (9.19)

The least squares estimation of the parameter matrix ⇤ is given by

b⇤ = (Z0Z)�1Z0Y.

Note that Z is of size n by p and Z0Z is only invertible when n ⌧ p. The least squares
estimation does not provide robust parameter estimates for n ⌧ p, which is the usual case
in surface modeling. For small-n large-p problem, GLM need to be regularized using the
L1-norm penalty [113, 114, 112, 115, 116, 117].

9.6.4 Longitudinal Models

So far we have only dealt with an imaging data set where the parameters of the model are
fixed and do not vary across subjects and scans. Such fixed-e↵ects models are inadequate in
modeling the within-subject dependency in longitudinally collected imaging data. However,
mixed-e↵ects models can explicitly model such dependency [118, 119, 120, 121]. There are
three advantages of the mixed-e↵ects model over the usual fixed-e↵ects model. It explicitly
models individual growth patterns and accommodates an unequal number of follow-up
image scans per subject and unequal time intervals between scans.

The longitudinal outcome Y
i

from the i-th subject is modeled using the mixed-e↵ects
model [119] as

Y
i

= X
i

� + Z
i

�
i

+ e
i

, (9.20)

where � is the fixed-e↵ects shared by all subjects. �
i

is the subject-specific random-e↵ects
and e

i

⇠ N(0,�2) is independent and identically distributed noise. X
i

and Z
i

are the
design matrices corresponding to the fixed and random e↵ects respectively for the i-th
subject. We assume �

i

⇠ N(0,�) and ✏
i

⇠ N(0,⌃
i

) with some covariance matrices � and
⌃

i

. Hierarchically we are modeling (9.20) as

Y
i

|�
i

⇠ N(X
i

� + Z
i

�
i

,⌃
i

), �
i

⇠ N(0,�).

� accounts for covariance among random e↵ect terms. The within-subject variability be-
tween the scans is expected to be smaller than between-subject variability and explicitly
modeled by ⌃

i

. The covariance of �
i

and ✏ are expected to have block diagonal structure
such that there is no correlation among the scans of di↵erent subjects while there is high
correlation between the scans of the same subject:

V
✓
�
i

✏
i

◆
=

✓
� 0
0 ⌃

i

◆
.
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Subsequently, the overall covariance of Y
i

is given by

VY
i

= Z
i

�Z 0
i

+ ⌃
i

.

The random-e↵ect contribution is Z
i

�Z 0
i

while the within-subject contribution is ⌃
i

.
The parameters and the covariance matrices can be estimated via the restricted max-

imum likelihood (REML) method [118, 121]. The most widely used tools for fitting the
mixed-e↵ects model are the nlme library in the R statistical package [121]. However, there is
no need to use R to fit the mixed-e↵ects model. Keith Worsley has implemented the REML
procedure in the SurfStat package6 [2, 122].

Here we briefly explain how to set up a longitudinal mixed-e↵ect model in practice. In
the usual fixed-e↵ect model, we have a linear model containing the fixed-e↵ect term age

i

for the i-th subject:

y
i

= �0 + �1age
i

+ ✏
i

, (9.21)

where ✏
i

is assumed to follow independent Gaussian. In (9.21), every subject has identical
growth trajectory �0 + �1age, which is unrealistic. Biologically, each subject is expected to
have its own unique growth trajectory. So we assume each subject to have its own intercept
�0 + �

i0 and slope �1 + �
i1:

y
i

= �0 + �
i0 + (�1 + �

i1)age
i

+ ✏
i

. (9.22)

It is reasonable to assume the random vector � = (�
i0, �i1) to be multivariate normal. The

model (9.22) can be decomposed into fixed- and random-e↵ect terms:

y
i

= (�0 + �1age
i

) + (�
i0 + �

i1age
i

) + ✏
i

. (9.23)

The fixed-e↵ect term �0 + �1age
i

models the linear growth of the population while the
random-e↵ect term �

i0+�i1age
i

models the subject specific growth variations. Incorporating
additional factors and interaction terms are done similarly.

In the hippocampus case study, the first MRI scans are taken at 11.6± 3.7 years while
the second scans are taken at 14± 3.9 years. We are interested in determining the e↵ects of
income level on the shape of the hippocampus. In Section 9.6.1, we treated the second scans
as if they came from independent subjects and modeled them using the fixed-e↵ects model.
Now we explicitly incorporate the dependency of repeated scans of the same subject. It is
necessary to explicitly model the within-subject variability that is expected to be smaller
than between-subject variability. This can be done by introducing a random-e↵ect term.
The resulting F-statistic maps are given in Figure 9.5-right. However, we did not detect
any region that is a↵ected by income. Thus, we tested the age and income interaction and
found the regions of strong interaction (Figure 9.6).

9.6.5 Random Field Theory

Since we need to set up a GLM on every mesh vertex, it becomes a multiple comparisons
problem. Correcting for multiple comparisons is crucial in determining overall statistical
significance in correlated test statistics over the whole surface. For surface data, various
methods are proposed: Bonferroni correction, random field theory [123, 3], false discovery
rates (FDR) [124, 125, 126], and permutation tests [127]. Among many techniques, the

6The MATLAB package is available at www.math.mcgill.ca/keith/surfstat.
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FIGURE 9.6
F -statistics maps on testing the interaction between the income level and age while control-
ling for gender in a linear mixed-e↵ects model. The arrows show the deformation di↵erences
between the groups (high income - low income). Significant regions are only found in the
tail and midbody regions of the right hippocampus.

random field theory is probably the most natural in relation to surface data smoothing
since it is able to explicitly control the amount of smoothing.

The generalization of a continuous stochastic process in Rn to a higher dimensional
abstract space is called a random field [128, 2, 63, 106, 129]. In the random field theory
[123, 3], measurement Y at position x 2 M is modeled as

Y (x) = µ(x) + ✏(x),

where µ is the unknown signal to be estimated and ✏ is the measurement error. The mea-
surement error at each fixed x can be modeled as a random variable. Then the collection of
random variables {✏(x) : x 2 M} is called a random field or stochastic process. A measure-
theoretic definition is given in [128].

Detecting the regions of statistically significant �(x) for some x 2 M can be done via
thresholding the maximum of a random field defined on the cortical surface [3, 4]. For
instance, T random field on the surface M is defined as

T (x) =
p
n
M(x)

S(x)
,

where M and S are the sample mean and standard deviation over the n subjects. Under
the null hypothesis

H0 : µ(x) = 0 for all x 2 M,

T (x) is distributed as a student’s T with n � 1 degrees of freedom at each voxel x. The
pvalue of the local maxima of the T field will give a conservative threshold compared to
FDR [3].

For su�ciently high threshold y, we can show that

P
⇣
max
x2M

T (x) � y
⌘
⇡

3X

i=0

�
i

(M)⇢
i

(y), (9.24)

where ⇢
i

is the i-dimensional EC-density and the Minkowski functional �
i

are

�0(M) = 2, �1(M) = 0, �2(M = kMk, �3(M) = 0
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FIGURE 9.7
The plots showing income level dependent growth di↵erences in the posterior (left) and
midbody (right) regions of the right hippocampus. The red lines are the linear regression
lines. Scans within a subject are identified by dotted lines.

and kMk is the total surface area of M (Worsley, 1996a). When di↵usion or heat kernel
smoothing with given FWHM is applied on surface M, the 0-dimensional and 2-dimensional
EC-density becomes

⇢0(y) =

Z 1

y

�(n2 )

((n� 1)⇡)1/2�(n�1
2 )

⇣
1 +

y2

n� 1

⌘�n/2
dy,

⇢2(y) =
1

FWHM2

4 ln 2

(2⇡)3/2
�(n2 )

(n�1
2 )1/2�(n�1

2 )
y
⇣
1 +

y2

n� 1

⌘�(n�2)/2
.

The excursion probability, which is the probability of obtaining false positives for the
one-sided alternate hypothesis, is approximated by the following formula:

P
⇣
max
x2M

T (x) � y
⌘
⇡ 2⇢0(y) + kMk⇢2(y).

For smoothing cortical thickness [2, 18], an FWHM of between 20 to 30 mm is recom-
mended. This FWHM reflects the spatial frequency associated with the sulcal pattern. For
measurements on smaller subcortical structures such as hippocampus and amygdala, signif-
icantly smaller FWHM is recommended. For amygdala and hippocampus, 0.5–1 mm would
be su�cient.

In the hippocampus case study, we did not detect any statistically significant group
di↵erence at 0.01 level after correcting for multiple comparisons in both the left and right
hippocampi. However, we obtained highly focalized regions of group di↵erence in the growth
rate, the interaction between income level and age, in the right hippocampus (corrected
pvalue = 0.03). The posterior region is enlarging while the midbody and the anterior parts
are shrinking in children from low-income families (Figure 9.6 and 9.7). On the other hand,
the pattern is opposite for children from high-income families. Note that the right hip-
pocampus is involved in the active maintenance of associations with spatial information
[130]. Future studies investigating the relationship between family socioeconomic status
and spatial information processing measures are warranted.



254

Bibliography

[1] B.B. Avants, C.L. Epstein, M. Grossman, and J.C. Gee. Symmetric di↵eomorphic
image registration with cross-correlation: Evaluating automated labeling of elderly
and neurodegenerative brain. Medical Image Analysis, 12:26–41, 2008.

[2] M.K. Chung. Computational Neuroanatomy: The Methods. World Scientific, 2013.

[3] K.J. Worsley, S. Marrett, P. Neelin, A.C. Vandal, K.J. Friston, and A.C. Evans. A
unified statistical approach for determining significant signals in images of cerebral
activation. Human Brain Mapping, 4:58–73, 1996.

[4] K.J. Worsley, M. Andermann, T. Koulis, D. MacDonald, and A.C. Evans. Detecting
changes in nonisotropic images. Human Brain Mapping, 8:98–101, 1999.

[5] M.K. Chung, J.L. Hanson, R.J. Davidson, and S.D. Pollak. E↵ect of family income on
hippocampus growth: Longitudinal study. 17th Annual Meeting of the Organization
for Human Brain Mapping, (2697), 2011.

[6] A.M. Dale and B. Fischl. Cortical surface-based analysis I. Segmentation and surface
reconstruction. NeuroImage, 9:179–194, 1999.

[7] M.K. Chung, K.J. Worsley, S. Robbins, T. Paus, J. Taylor, J.N. Giedd, J.L. Rapoport,
and A.C. Evans. Deformation-based surface morphometry applied to gray matter
deformation. NeuroImage, 18:198–213, 2003.

[8] P.M. Thompson, J.N. Giedd, R.P. Woods, D. MacDonald, A.C. Evans, and A.W Toga.
Growth patterns in the developing human brain detected using continuum-mechanical
tensor mapping. Nature, 404:190–193, 2000.

[9] J.G. Sled, A.P. Zijdenbos, and A.C. Evans. A nonparametric method for automatic
correction of intensity nonuniformity in mri data. IEEE Transactions on Medical
Imaging, 17:87–97, 1988.

[10] K. Kollakian. Performance analysis of automatic techniques for tissue classification
in magnetic resonance images of the human brain. Technical Report Master’s thesis,
Concordia University, Montreal, Quebec, Canada, 1996.

[11] M. Ozkan, B.M. Dawant, and R.J. Maciunas. Neural-network-based segmentation of
multi-modal medical images: a comparative and prospective study. IEEE Transactions
on Medical Imaging, 12:534–544, 1993.

[12] C.D. Good, I.S. Johnsrude, J. Ashburner, R.N.A. Henson, K.J. Friston, and R.S.J.
Frackowiak. A voxel-based morphometric study of ageing in 465 normal adult human
brains. NeuroImage, 14:21–36, 2001.

[13] W.E. Lorensen and H.E. Cline. Marching cubes: A high resolution 3D surface con-
struction algorithm. In Proceedings of the 14th Annual Conference on Computer
Graphics and Interactive Techniques, pages 163–169, 1987.

[14] J.A. Sethian. Level Set Methods and Fast Marching Methods: Evolving Interfaces in
Computational Geometry, Fluid Mechanics, Computer Vision and Material Science.
Cambridge University Press, 2002.



Statistical Analysis on Brain Surfaces 255

[15] C. Davatzikos and R.N. Bryan. Using a deformable surface model to obtain a shape
representation of the cortex. Proceedings of the IEEE International Conference on
Computer Vision, 9:2122–2127, 1995.

[16] J.D. MacDonald, N. Kabani, D. Avis, and A.C. Evans. Automated 3-D extraction of
inner and outer surfaces of cerebral cortex from MRI. NeuroImage, 12:340–356, 2000.

[17] B.D. Rusch, H.C. Abercrombie, T.R. Oakes, S.M. Schaefer, and R.J. Davidson. Hip-
pocampal morphometry in depressed patients and control subjects: Relations to anx-
iety symptoms. Biological Psychiatry, 50:960–964, 2001.

[18] M.K. Chung, S. Robbins, and A.C. Evans. Unified statistical approach to cortical
thickness analysis. Information Processing in Medical Imaging (IPMI), Lecture Notes
in Computer Science, 3565:627–638, 2005.

[19] P.M. Thompson and A.W. Toga. A surface-based technique for warping 3-dimensional
images of the brain. IEEE Transactions on Medical Imaging, 15:1–16, 1996.

[20] C. Davatzikos. Spatial transformation and registration of brain images using elasti-
cally deformable models. Comput. Vis. Image Understanding, 66:207–222, 1997.

[21] M.I. Miller, A. Banerjee, G.E. Christensen, S.C. Joshi, N. Khaneja, U. Grenander,
and L. Matejic. Statistical methods in computational anatomy. Statistical Methods
in Medical Research, 6:267–299, 1997.

[22] B. Fischl, M.I. Sereno, R. Tootell, and A.M. Dale. High-resolution intersubject averag-
ing and a coordinate system for the cortical surface. Hum. Brain Mapping, 8:272–284,
1999.

[23] S.C. Joshi, J. Wang, M.I. Miller, D.C. Van Essen, and U. Grenander. Di↵erential
geometry of the cortical surface. In Vision Geometry IV, Vol. 2573, Proceedings of
the SPIE 1995 International Symposium on Optical Science, Engineering and Instru-
mentation, pages 304–311, 1995.

[24] L.D. Gri�n. The intrinsic geometry of the cerebral cortex. Journal of Theoretical
Biology, 166:261–273, 1994.

[25] W.M. Boothby. An Introduction to Di↵erential Manifolds and Riemannian Geometry.
Academic Press, London, 2nd edition, 1986.

[26] M.P. do Carmo. Riemannian Geometry. Prentice-Hall, Inc., 1992.

[27] E. Kreyszig. Di↵erential Geometry. University of Toronto Press, 1959.

[28] N. Khaneja, M.I. Miller, and U. Grenander. Dynamic programming generation of
curves on brain surfaces. IEEE Transactions on Pattern Analysis and Machine Intel-
ligence, 20:1260–1265, 1998.

[29] A. Andrade, F. Kherif, J. Mangin, K.J. Worsley, A. Paradis, O. Simon, S. Dehaene,
D. Le Bihan, and J-B. Poline. Detection of fMRI activation using cortical surface
mapping. Human Brain Mapping, 12:79–93, 2001.

[30] S. Angenent, S. Hacker, A. Tannenbaum, and R. Kikinis. On the Laplace-Beltrami
operator and brain surface flattening. IEEE Transactions on Medical Imaging, 18:700–
711, 1999.



256

[31] X. Gu, Y.L. Wang, T.F. Chan, T.M. Thompson, and S.T. Yau. Genus zero surface
conformal mapping and its application to brain surface mapping. IEEE Transactions
on Medical Imaging, 23:1–10, 2004.

[32] M. K. Hurdal and K. Stephenson. Cortical cartography using the discrete conformal
approach of circle packings. NeuroImage, 23:S119–S128, 2004.

[33] B. Timsari and R. Leahy. An optimization method for creating semi-isometric flat
maps of the cerebral cortex. In The Proceedings of SPIE, Medical Imaging, 2000.

[34] C. Brechbuhler, G. Gerig, and O. Kubler. Parametrization of closed surfaces for 3d
shape description. Computer Vision and Image Understanding, 61:154–170, 1995.

[35] M.K. Chung, R. Hartley, K.M. Dalton, and R.J. Davidson. Encoding cortical surface
by spherical harmonics. Statistica Sinica, 18:1269–1291, 2008.

[36] G. Gerig, M. Styner, D. Jones, D. Weinberger, and J. Lieberman. Shape analysis of
brain ventricles using SPHARM. In MMBIA, pages 171–178, 2001.

[37] A. Kelemen, G. Szekely, and G. Gerig. Elastic model-based segmentation of 3-d
neuroradiological data sets. IEEE Transactions on Medical Imaging, 18:828–839, 1999.

[38] L. Shen, J. Ford, F. Makedon, and A. Saykin. Surface-based approach for classification
of 3d neuroanatomical structures. Intelligent Data Analysis, 8:519–542, 2004.

[39] M.K. Chung, S.M. Schaefer, C. M. van Reekum, L.P. Schmitz, M. Sutterer, and R.J.
Davidson. A unified kernel regression on manifolds detects aging-related changes
in the amygdala and hippocampus. MICCAI, Lecture Notes in Computer Science
(LNCS), 8674:789–796, 2014.

[40] T. Bulow. Spherical di↵usion for 3D surface smoothing. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 26:1650–1654, 2004.

[41] R. Courant and D. Hilbert. Methods of Mathematical Physics. Interscience, New
York, English edition, 1953.

[42] H.H.H. Homeier and E.O. Steinborn. Some properties of the coupling coe�cients of
real spherical harmonics and their relation to gaunt coe�cients. Journal of Molecular
Structure: THEOCHEM, 368:31–37, 1996.

[43] M.A. Blanco, M. Florez, and M. Bermejo. Evaluation of the rotation matrices in
the basis of real spherical harmonics. Journal of Molecular Structure: THEOCHEM,
419:19–27, 1997.

[44] G. Wahba. Spline Models for Observational Data. SIAM, New York, 1990.

[45] L. Shen and M.K. Chung. Large-scale modeling of parametric surfaces using spherical
harmonics. In Third International Symposium on 3D Data Processing, Visualization
and Transmission (3DPVT), 2006.

[46] S. Mallat and Z. Zhang. Matching pursuits with time-frequency dictionaries. IEEE
Transactions on Signal Processing, 41:3397–3415, 1993.

[47] A. Gelb. The resolution of the Gibbs phenomenon for spherical harmonics. Mathe-
matics of Computation, 66:699–717, 1997.



Statistical Analysis on Brain Surfaces 257
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