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Figure 1. Graph filtration over correlations of FA-values on
1856 nodes. The maltreated children (top) has denser
homogeneous network compared to normal controls

(bottom). The size of nodes corresponds to the sum of
correlations over edges.

Introduction
Many existing brain network distances are based on matrix
norms. The element-wise differences may fail to capture
underlying topological differences. Further, matrix norms
are sensitive to outliers. A few extreme edge weights may
severely affect the distance. There is a need to develop net-
work distances that recognize topology.

We introduce Gromov-Hausdorff (GH) and Kolmogorov-
Smirnov (KS) distances. GH-distance is often used in persis-
tent homology based brain network models. The superior
performance of KS-distance is contrasted against matrix
norms and GH-distance in simulations with the ground
truths. The KS-distance is then applied in characterizing the
multimodal MRI and DTI study of maltreated children.

Matrix norms
Consider a weighted graph with node set V = {1, . . . ,p} and
edge weights wi j between nodes i and j. The measurement
vector xi = (x

1i, · · · , xni)> 2 Rn is given at node i. The Pear-
son correlation between xi and x j is denoted as corr(xi,x j).
For weights wi j =

p
1 � corr(xi,x j), it can be shown that

X = (V,wi j) forms a metric space.

Given two networks X1 = (V,w1

i j) and X2 = (V,w2

i j), the Ll-
norm of network difference is given by

Dl(X1,X2) =
⇣X

i,j

��w1

i j � w2

i j
��l⌘1/l.

When l = 1, L1-distance is written as

D1(X1,X2) = max

8i,j
��w1

i j � w2

i j
��.

The element-wise differences may not capture additional
higher order similarity. Also L

1

and L
2

-distances usually
surfer the problem of outliers. Few outlying extreme edge
weights may severely affect the distance. Further, these dis-
tances ignore the underlying topological structures. Thus,
there is a need to define distances that are more topological.

Gromov-Hausdorff distance
GH-distance for brain networks was first used in Lee et al.
(2012). The distance si j between the closest nodes in the
two disjoint connected components in a graph is the single
linkage distance (SLD). GH-distance between networks is
then defined through GH-distance between corresponding
dendrograms. Given two dendrograms D1 = (V, s1i j) and
D2 = (V, s2i j) with single linkage distances s1i j and s2i j,

DGH (D1,D2) =
1

2

max

8i,j
|s1i j � s2i j |.

Kolmogorov-Smirnov distance
Given network X = (V,wi j), its binary network B✏ (X) =
(V,B✏ (wi j)) is a graph with edge weightsB✏ (wi j) = 1 if wi j  ✏
and 0 otherwise. It can be shown that

B✏0(X) ⇢ B✏1(X) ⇢ B✏2(X) ⇢ · · ·

for 0 = ✏
0

 ✏
1

 ✏
2

· · · . The sequence of such nested graphs
is called the graph filtration (Fig. 1) and ✏

0

, ✏
1

, ✏
2

· · · are called
the filtration values (Lee et al., 2011, 2012; Chung et al., 2017).
The graph filtration can be quantified using monotonic func-
tion f satisfying

f � B✏ j (X) � f � B✏ j+1(X)

for ✏ j  ✏ j+1.

Figure 2. Toy networks, its dendrgrams, The number of
connected components (�

0

) and the size of the largest
cluster (�) are plotted over filtration values. Uncorrected

edge should be treated as having1weights.

The number of connected components, the zeroth Betti num-
ber �

0

, satisfies the monotonicity property (1). The size of the
largest cluster, denoted as �, satisfies a similar but opposite
relation of monotonic increase (Fig. 2).
Kolmogorov-Smirnov (KS) distance between X1 and X2 is de-
fined as (Chung et al., 2015, 2017)

DKS(X1,X2) = sup

1 jq

�� f � B✏ j (X1) � f � B✏ j (X2)��.
The probability distribution of DKS under the null hypothesis
of no network difference is given by

lim

q!1

⇣
Dq/
p
2q � d

⌘
= 2

1X

i=1

(�1)i�1e�2i2d2

.

Comparisons
The simulations were performed 100 times and the average
results were reported. The sample size was n = 5 in each
group and the number of nodes was p = 100 (Fig. 3). The
noise level � = 0.01 was used. The results did change even if
we increased the noise level to � = 0.1.

p
1 � corr was used

as edge weights.

Figure 3. Randomly simulated correlation matrices with
modular structures.

Group I. The measurement vector xi was simulated as multi-
variate normal N (0, I).
Group II. It was simulated as yi = xi + N (0,�2In) .
Group III. It was simulated as yi = 0.5xci+1 + N (0,�2In). This
introduce modules in the network. Each module consists of
c = p/k number of points (k = 4,5,10).
Group IV. The measurement vector yi was simulated by
adding noise to Group III: zi = yi + N (0,�2In).

No network difference. It was expected there was no network
difference between Groups I and II (0 vs. 0) and III and IV (4
vs. 4). All the distances performed equally well and did not
detect differences (Table 1).

Network difference. We compared 4 and 5 module networks,
and 5 and 10 module networks. KS-distances performed
extremely well compared with other distances.

Computation. The KS-distance method took about 20 sec-
onds while all other distance methods took about 16 min-
utes. The code is available: http://www.stat.wisc.
edu/˜mchung/twins.

Modules L
1

L
2

L1 GH KS (�
0

) KS (�)

0 vs. 0 0.93 0.93 0.93 0.87 1.00 1.00

4 vs. 4 0.89 0.89 0.90 0.86 0.87 0.88

4 vs. 5 0.14 0.06 0.03 0.29 0.07⇤⇤ 0.07⇤⇤

5 vs. 10 0.47 0.19 0.10 0.33 0.01 0.06⇤

Table 1. Simulation results given in terms of p-values. In the
case of no network differences (0 vs. 0 and 4 vs. 4), higher
p-values are better. In the case of network differences (4 vs.
5 and 5 vs. 10), smaller p-values are better. ⇤ and ⇤⇤ indicates
multiplying 10

�3 and 10

�4.

Application
The methods were applied to multimodal MRI and DTI of
31 normal controls and 23 age-matched children who ex-
perienced maltreatment while living in post-institutional
settings before being adopted by families in US. Ages range
from 9 to 14 years. The average amount of time spend in in-
stitutional care was 2.5 ± 1.4 years. Children were on average
3.2 years when they were adapted. The detailed descrption
of the study is in Chung et al. (2015).

For MRI, the Jacobian determinants of warping from
the template to individual subjects were obtained. For DTI,
fractional anisotropy (FA) were calculated for diffusion ten-
sor volumes diffeomorphically registered to the study spe-
cific template. Jacobian determinants and FA-values are
uniformly sampled at 1856 nodes along the white mater
template boundary.

Figure 4. The plots of �
0

(left) and � (right) over
p
1 � corr.

of FA-values. The plots clearly show the structural network
differences between maltreated children (dotted red) and

normal controls (solid black) on 1856 nodes. The maximum
gap between the plots is KS-distance.

Correlation within modality. The correlations of the Jacobian
determinant and FA-values were computed between nodes
within each modality. Using KS-distance, we determined the
statistical significance of differences �

0

and � plots for each
modality separately (Fig. 4). The statistical results in terms
of p-values are all below 0.0001 indicating the very strong
overall structural network differences in both MRI and DTI.

Cross-correlation across modalities. We also computed the
cross-correlation between the Jacobian determinants and FA-
values. The statistical significance of the cross-correlation
matrix differences is then determined using KS-distance (p-
value < 0.0001). The KS-distance method is robust under the
change of node size and we also obtained the similar result
when the node size changed to 548.
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