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Abstract. We present a unified online statistical framework for quanti-
fying a collection of binary images. Since medical image segmentation is
often done semi-automatically, the resulting binary images may be avail-
able in a sequential manner. Further, modern medical imaging datasets
are too large to fit into a computer’s memory. Thus, there is a need to
develop an iterative analysis framework where the final statistical maps
are updated sequentially each time a new image is added to the analysis.
We propose a new algorithm for online statistical inference and apply to
characterize mandible growth during the first two decades of life.

1 Introduction

The typical implementation of statistical inference in medical imaging requires
that all the images are available in advance. That is the usual premise of existing
medical image analysis tools such as Image J, SPM, SFL and AFNI. However,
there are many situations where the entire imaging dataset is not available and
parts of imaging data are obtained in a delayed sequential manner. This is a
common problem in medical imaging, where not every subject is scanned and
processed at the same time.

When the image size is large, it may not be possible to fit all of the imaging
data in a computer’s memory, making it necessary to perform the analysis by
adding one image at a time in a sequential manner. In another situation, the
imaging dataset may be so large that it is not practical to use all the images in the
dataset but use a subset of the dataset. In this situation, we need to incremen-
tally add stratified datasets one at a time to see if we are achieving reasonable
statistical results. In all the above situations, we need a way to incrementally
update the analysis result without repeatedly running the entire analysis when-
ever new images are added.

An online algorithm is one that processes its inputted data in a sequential
manner [9]. Instead of processing the entire set of imaging data from the start,
an online algorithm processes one image at a time. That way, we can bypass
the memory requirement, reduce numerical instability and increase computa-
tional efficiency. Online algorithms and machine learning are both concerned
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with problems of making decisions about the present based on knowledge of the
past [3]. Thus, online algorithms are often encountered in machine learning lit-
erature but there is very limited number of studies in medical imaging possibly
due to the lack of problem awareness. With the ever-increasing amount of large
scale medical imaging databases such as Alzheimer’s disease neuroimaging initia-
tive (ADNI) and human connectome project (HCP), the development of various
online algorithm is warranted. In this study, we propose to develop online sta-
tistical inference procedures. The methods are then used in characterizing the
mandible growth using binary mandible segmentations from CT.

2 Probabilistic Model of Binary Segmentation

Let p(x) be the probability of voxel x belonging to some region of interest (ROI)
M. Let 1M be an indicator function defined as 1M(x) = 1 if x ∈ M and 0
otherwise. We assume that the shape of M is random (due to noise) and we
associate it with probability p(x):

P (x ∈ M) = p(x), P (x /∈ M) = 0.

The volume of M given by vol(M) =
∫
R3 1M(x) dx. is also random. The mean

volume of M is then

E vol(M) =
∫

R3
E 1M(x) dx =

∫

R3
p(x) dx.

The integral of the probability map thus can be used as an estimate for the
volume of ROI. Unfortunately, medical images often have holes and cavities
that have to be patched topologically for accurate volume estimation (Fig. 1a).
Such topological defects can be easily patched by Gaussian kernel smoothing
without resorting to advanced topology correction methods (Fig. 1b) [5].

Consider a 3-dimensional Gaussian kernel K(x) = 1
(2π)3/2

exp(−‖x‖2/2),
where ‖ · ‖ is the Euclidean norm of x ∈ R

3. The rescaled kernel Kt is defined as
Kt(x) = K(x/t)/t3. Gaussian kernel smoothing applied to the probability map
p(x) is given by

Kt ∗ p(x) =
∫

R3
Kt(x − y)p(y) dy.

The volume estimate is invariant under smoothing:

E vol(M) =
∫

R3
p(y) dy

=
∫

R3

∫

R3
Kt(x − y)p(y) dy dx =

∫

R3
Kt ∗ p(x) dx.

Here, we used the fact that Gaussian kernel is a probability density, i.e.,
∫

R3
Kt(x, y) dx = 1
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for any y ∈ R
3. Thus, the smoothed probability map Kt ∗p(x) can be taken as a

more robust probability map of whether a voxel belongs to a mandible and can
be used as a response variable in modeling the growth of mandible.

Fig. 1. (a) A representative mandible binary segmentation that are affine registered to
the template space. (b) Gaussian kernel smoothing of segmentation with bandwidth
σ = 20. Smoothing can easily patch topological artifacts such as cavities and handles.
The sample mean (c) and variance (d) of the smoothed maps computed using the online
algorithm.

3 Online Algorithm for t-Test

Given smoothed images x1, · · · , xm, an online algorithm for computing the sam-
ple mean image μm is given by

μm =
1
m

m∑

i=1

xi = μm−1 +
1
m

(xm − μm−1) (1)

for any m ≥ 1. The algorithm updates the previous mean μm−1 with new image
xm. This algorithm avoids accumulating large sums and tend to be numerically
more stable [7].

An online algorithm for computing the sample variance map σ2
m is alge-

braically involved [4,11]. After lengthy derivation, it can be shown that

σ2
m =

1
m − 1

m∑

i=1

(xi − μm)2 =
m − 2
m − 1

σ2
m−1 +

1
m

(xm − μm−1)2

for m ≥ 2. The algorithm starts with the initial value σ2
1 = 0. Figure 1 displays

the results of mean and variance computation using the online algorithms.
For comparing a collection of images between groups, two-sample t-statistic

can be used. Given measurements x1, · · · , xm ∼ N(μ1, (σ1)2) in one group and
y1, · · · , yn ∼ N(μ1, (σ2)2) in the other group, the two-sample t-statistic for test-
ing H0 : μ1 = μ2 at each voxel x is given by

Tm,n(x) =
μ1

m − μ2
n − (μ1 − μ2)

√
(σ1)2m/m + (σ2)2n/n

, (2)
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where μ1
m, μ2

n, (σ1)2m, (σ2)2m are sample means and variances in each group esti-
mated using the online algorithm. Tm,n is then sequentially computed as

T1,0 → T2,0 → · · · → Tm,0 → Tm,1 → · · · → Tm,n

in m + n steps.

4 Online Algorithm for Linear Regression

The online algorithm for linear regression is itself useful but additionally more
useful in constructing an online algorithm for F -tests in the next section. Given
data vector ym−1 = (y1, · · · , ym−1)′ and design matrix Zm−1, consider linear
model

ym−1 = Zm−1λm−1 (3)

with unknown parameter vector λm−1 = (λ1, λ2, · · · , λk)′. Multiplying Z ′
m−1 on

the both sides we have

Z ′
m−1ym−1 = Z ′

m−1Zm−1λm−1 (4)

Let Wm−1 = Z ′
m−1Zm−1, which is a k×k matrix. In most applications, there

are substantially more data than the number of parameters, i.e., m � k, and
Wm−1 is invertible. The least squares estimation (LSE) of λm−1 is given by

λm−1 = W−1
m−1Z

′
mym−1.

When new data ym is introduced to the linear model (3), the model is updated
to (

ym−1

ym

)

=
(

Zm−1

zm

)

λm,

where zm is 1 × k row vector. Subsequently, we have

W ′
m−1λm−1 + z′

mym = (Wm−1 + z′
mzm)λm.

Using Woodbury formula [6],

(Wm−1 + z′
mzm)−1 = W−1

m−1 − cmW−1
m−1z

′
m,

where cm = 1/(1 + zmWm−1z
′
m) is scalar. Then we have the explicit online

algorithm for updating the parameter vector:

λm = (I − W−1
m−1z

′
mym − cmW−1

m−1z
′
mW ′

m−1)λm−1 − cmW−1
m−1z

′
mz′

mym, (5)

where I is the identity matrix of size k × k. Since the algorithm requires Wm−1

to be invertible, the algorithm must start from

λk → λk+1 → · · · → λm.

A similar online algorithm for fitting a general linear model (GLM) was
introduced for real-time fMRI [2], where the Cholesky factorization was used to
invert the covariance matrix in solving GLM. Our approach based on Woodbury
formula does not require the factorization or inversion of matrices and thus more
efficient.
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5 Online Algorithm for F -Test

Let yi be the i-th image, xi = (xi1, · · · , xip)′ to be the variables of interest and
zi = (zi1, · · · , zik)′ to be nuisance covariates corresponding to the i-th image.
We assume there are m−1 images to start with. Consider a general linear model

ym−1 = Zm−1λm−1 + Xm−1βm−1,

where Zm−1 = (zij) is (m − 1) × k design matrix, Xm−1 = (xij) is (m − 1) × p
design matrix. λm−1 = (λ1, · · · , λk)′ and βm−1 = (β1, · · · , βp)′ are unknown
parameter vectors to be estimated at the (m−1)-th iteration. Consider hypothe-
ses

H0 : β = 0 vs. H1 : β 	= 0.

The reduced null model when β = 0 is ym−1 = Zm−1λ
0
m−1. The goodness-of-fit

of the null model is measured by the sum of the squared errors (SSE):

SSE0
m−1 = (ym−1 − Zm−1λ

0
m−1)

′(ym−1 − Zm−1λ
0
m−1),

where λ0
m−1 is estimated using the online algorithm (5). This provide the sequen-

tial update of SSE under H0:

SSE0
k → SSE0

k+1 → · · · → SSE0
m.

Similarly the fit of the alternate full model is measured by

SSE1
m−1 = (ym−1 − Zm−1γ

1
m−1)

′(ym−1 − Zm−1γ
1
m−1),

where Zm−1 = [Zm−1Xm−1] is the combined design matrix and

γ1
m−1 =

(
λ1

m−1

β1
m−1

)

is the combined parameter vector. Similarly SSE under H1 is given as

SSE1
k+p → SSE1

k+1 → · · · → SSE1
m.

Under H0, the test statistic at the m-th iteration fm is given by

fm =
(SSE0 − SSE1)/p

SSE0/(m − p − k)
∼ Fp,m−p−k, (6)

which is the F -statistic with p and m − p − k degrees of freedom.

6 Random Field Theory

Since the statistic maps are correlated over voxels, it is necessary to correct
multiple comparisons using the random field theory [12], which is based on the
expected Euler characteristic (EC) approach. Given statistic maps S such as t-
or F -test maps, for sufficiently high threshold h, we have

P
(

sup
x∈M

S(x) > h
)

=
N∑

d=0

μd(M)ρd(h), (7)

where μd(M) is the d-th Minkowski functional or intrinsic volume of M. ρd(h)
is the EC-density of S. The explicit formulas for μd and ρd are given in [12].
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7 Application

Subjects. The dataset consisted of 290 typically developing individuals ranging
in age from birth to 20 years old. Only CT images showing the full mandible
without any motion or any other artifacts were selected though minimal dental
artifacts were tolerated. The age distribution of the subjects is 9.66 ± 6.34 years.
The minimum age was 0.17 years and maximum age was 19.92 years. A total of
160 male and 130 female subjects were divided into 3 groups. Group I (age below
7) contained 130 subjects. Group II (between 7 and 13) contained 48 subjects.
Group III (between 13 and 20) contained 112 subjects. The main biological
question of interest was whether there were localized regions of growth between
these age groups. The same grouping was used in the previous study [5].

Image preprocessing. CT images were visually inspected and determined to
capture the whole mandible geometry. The mandibles in CT were semi-
automatically segmented using an in-house processing pipeline that involves
image intensity thresholding using the Analyze software package (AnalyzeDi-
rect, Inc., Overland Park, KS). Each of the processed mandibles were examined
visually and edited manually by raters. The segmented binary images were then
affine registered to the mandible labeled as F226-15-04-002-M (Fig. 1). The
mandible F226-15-04-002-M served as the template. Due to the lack of exist-
ing prior map in the field, we simply used the normalized binary segmentation
results as the probability map p(x).

CT images are inherently noisy due to errors associated with image acquisi-
tion. Compounding the image acquisition errors, there are errors caused by image
registration and semiautomatic segmentation. So it is necessary to smooth out
the affine registered segmented images. We smoothed the binary images with
Gaussian kernel with bandwidth σ = 20 voxels (Fig. 1). Since CT image resolu-
tion is 0.35 mm, 20 voxel wide bandwidth is equivalent to 7 mm. The bandwidth
was chosen to reflect the size of missing teeth and cavities. Any smaller filter size
will not mask large missing teeth and cavity. The average of all 290 smoothed
binary images was computed and used as the final template. For visualization,
the statistical maps are projected onto the surface of template.

Age effects. We performed the t-test to assess age effects between the groups.
The resulting t-statistic maps are displayed in Fig. 2-top. Voxels above or below
±4.41 were considered significant in the t-statistic between age groups I and II
at the 0.05 level after the multiple comparisons correction. Similarly for other
age group comparisons, voxels above or below ±4.43 (between II and III) or 4.37
(between I and III) were considered significant at the 0.05 level. These regions are
colored dark red or dark blue. The dark red regions show positive growth (bone
deposition) and dark blue regions show negative growth (bone resorption). The
findings are consistent with previous studies based on 2D surface deformation
[5] and landmarks [10].

Sex effects. Within each group, we tested the significance of sexual dimorphism
by performing the two-sample t-test between males and females. The resulting t-
statistic maps are displayed in Fig. 2-bottom. Any region above or below ± 4.37,
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Fig. 2. Top: t-stat. maps showing mandible growth. The elongation of mandible is
shown between Groups II and III, and I and III. The condyle regions show prominent
growth in Group III- I comparison. At the same time, the elongation is shown as neg-
ative growth (dark blue). Bottom: t-stat. maps (male - female) showing sex differences
in each age group. There were no significant sex differences in groups I and II. However,
pubertal and post-pubertal sex difference are evident in group III that starts at age 13.

4.89 and 4.50 (for group I, II and III respectively) were considered significant
at 0.05 level after the multiple comparisons correction. In group I and II, there
is no gender differences. In group III, the statistical significance is localized
in the regions between Condyle and Gonion in the both sides. Such findings
are consistent with general findings on sexual dimorphism that become evident
during puberty.

8 Discussion

The image processing and analysis somewhat resembles the voxel-based mor-
phometry (VBM) widely used in modeling the gray and white matter tissue
probability maps in structural brain magnetic resonance imaging studies [1].
VBM does not necessarily require very accurate nonlinear registration. The
shape difference is implicitly encoded in tissue density maps. If perfect regis-
tration is done, the tissue density maps will be identical across subjects and we
will not detect any difference. Thus, in our study, only affine registration is used.
Previously we used a diffeomorphic surface shape model to a similar dataset [5],
where we also obtained getting the similar pattern of wide spread growth in
almost identical places.
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In VBM, the posterior probability map is estimated using the prior probabil-
ity map. However, there is no such prior map in mandibles CT studies yet. Our
290 subject average probability map is distributed as a potential prior map for
other Bayesian shape modeling [8]: http://www.stat.wisc.edu/∼mchung/VBM.
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