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Abstract

In diffusion tensor imaging, structural connectivity between brain regions is often measured by the number of
white matter fiber tracts connecting them. Other features such as the length of tracts or fractional anisotropy
(FA) are also used in measuring the strength of connectivity. In this study, we investigated the effects of incor-
porating the number of tracts, the tract length, and FA values into the connectivity model. Using various node-
degree-based graph theory features, the three connectivity models are compared. The methods are applied in
characterizing structural networks between normal controls and maltreated children, who experienced maltreat-
ment while living in postinstitutional settings before being adopted by families in the United States.
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Introduction

D iffusion tensor imaging (DTI) is a noninvasive imag-
ing modality that is often used to characterize the micro-

structure of biological tissues by using magnitude, anisotropy,
and anisotropic orientation associated with diffusion (Basser
et al., 1994). It is assumed that the direction of greatest diffu-
sivity is most likely aligned to the local orientation of the
white matter fibers. Traditionally, scalar measures such as
fractional anisotropy (FA) and mean diffusivity obtained
from DTI have been used for quantifying clinical populations
at the voxel level (Barnea-Goraly et al., 2004; Basser and Pier-
paoli, 1996; Daianu et al., 2013; Jones et al., 2006; Roberts
et al., 2005; Smith et al., 2006). Various tractography methods
have been developed to visualize and map out major white
matter pathways in individuals and brain atlases (Basser
et al., 2000; Catani et al., 2002; Conturo et al., 1999; Lazar
et al., 2003; Mori et al., 1999, 2002; Thottakara et al., 2006;
Yushkevich et al., 2007). The tractography can yield addi-
tional connectivity metrics that describe the localized varia-

tions in connectivity strength as a form of network graphs.
The tractography-based whole brain network analysis has
shown considerable promise in quantifying neural pathways
in various populations (Daianu et al., 2013).

The strength of connection from one gray matter region to
another is often measured by counting the number of fiber
tracts connecting the two regions in predefined parcella-
tions (Daianu et al., 2013; Gong et al., 2009). A problem
with the simple tract counting approach might be the ne-
glect of both the distance between the regions and FA val-
ues. There have been few modifications and variations to
the simple tract counting method in the literature. Skudlar-
ski and colleagues (2008) used a weighting scheme that pe-
nalizes indirect longer connections. The connectivity
between two parcellations is given by tract counts that are
normalized by the volumes of regions of interest (ROI)
(Van Den Heuvel and Sporns, 2011). Kim and colleagues
(2015) and Van Den Heuvel and Sporns (2011) used the
mean FA values along the tracts as the measure of connec-
tivity. However, it is unclear whether there is an optimal
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connectivity measure, or whether different approaches
meaningfully impact results.

In this study, connectivity methods based on tract count,
length, and FA values are compared. The tract length and
its FA-value-based methods are using an electrical circuit
model as an analogy, where the strength of connection corre-
sponds to the resistance of the circuit. Although electrical
circuit models were never used for modeling brain networks
at the macroscopic level except by Chung and colleagues
(2012), they were often used in a wide variety of mostly bi-
ological networks that are not related to any electrical circuit.
Starting with Doyle and Snell (1984), numerous studies for-
mulated graphs and networks as electrical circuits (Chandra
et al., 1996; Tetali, 1991). Segev and colleagues (1985) used
an electrical circuit model to model the electrical behavior of
neurons. Electrical resistance models are also used in genetic
networks (Leiserson et al.; Suthram et al., 2008). In particu-
lar, Yeger-Lotem and colleagues (2009) and Basha and col-
leagues (2013) formulated a minimum-cost network flow in
genetic networks, which is related to electrical resistance.

For comparisons between the three methods, graph theoreti-
cal features based on node degree is investigated. The node
degree, which counts the number of connections at a node, is
probably the most fundamental graph theoretic feature used
in network analysis. The node degree is used directly and indi-
rectly, defining many other graph theoretic features (Bullmore
and Sporns, 2009; Fornito et al., 2016). The node degree and
its probability distribution will be investigated in detail. To
complement the comparisons, the strength of connectivity
will also be contrasted by comparing two different samples:
normal controls (NCs) and maltreated children, who experi-
enced severe early life stress and maltreatment.

Early and severe childhood stress, such as experiences
of abuse and neglect, have been associated with a range of
cognitive deficits (Loman et al., 2010; Pollak, 2008; Sanchez
and Pollak, 2009) and structural abnormalities (Gorka et al.,
2014; Hanson et al., 2012, 2013; Jackowski et al., 2009)
years after the stressors. However, little is known about the
underlying biological mechanisms leading to cognitive prob-
lems in these children (Pollak et al., 2010). Four studies have
reported alterations in prefrontal white matter in children
exposed to early stress (De Bellis et al., 2002; Hanson
et al., 2012, 2013; Hanson et al., 2015). Other studies have
suggested that early stress may cause larger hippocampal
white matter volume (Tupler and De Bellis, 2006) or smaller
cerebellar volume (Bauer et al., 2009). The extant literature
has been based on ROI-based volumetry or univariate
vowel-wise morphometric techniques to characterize anatom-
ical differences between groups. Network approaches may
allow for a richer and fuller characterization of specific neural
circuits, facilitating a greater understanding of brain and be-
havioral alterations after child maltreatment. In this study,
we describe three network analysis frameworks and demon-
strate the potential utility by applying them to DTI compari-
sons of children exposed to early life stress and maltreatment.

Methods

Subjects

The study consisted of 23 children who experienced docu-
mented maltreatment early in their lives, and 31 age-matched
NC subjects. All the children were recruited and screened at

the University of Wisconsin-Madison. The maltreated chil-
dren were raised in institutional settings, where the quality
of care has been documented as falling well below the stan-
dard necessary for healthy human development. For the con-
trols, we selected children without a history of maltreatment
from families with similar current socioeconomic statuses.
The exclusion criteria included, among many others, abnor-
mal IQ(<78), congenital abnormalities (e.g., Down syn-
drome or cerebral palsy), and fetal alcohol syndrome. The
average age for maltreated children was 11:26� 1:71 years
whereas that of controls was 11:58� 1:61 years. This partic-
ular age range was selected since this development period is
characterized by major regressive and progressive brain
changes (Hanson et al., 2013; Lenroot and Giedd, 2006).
There were 10 boys and 13 girls in the maltreated group
and 18 boys and 13 girls in the control group. Groups did
not differ on age, pubertal stage, sex, or socioeconomic status
(Hanson et al., 2013). The average amount of time spent by
children in institutional care was 2:5 years� 1:4 years, with
a range from 3 months to 5.4 years. Children were on average
3:2 years� 1:9 months when they were adopted, with a
range of 3 months to 7.7 years. Table 1 summarizes the par-
ticipant characteristics. Additional details about the recruit-
ment strategy and participant characteristics can be found
in Hanson and colleagues (2013).

Preprocessing

DTI was collected on a 3T General Electric SIGNA scanner
(Waukesha, WI) by using a cardiac-gated, diffusion-
weighted, spin-echo, single-shot, EPI pulse sequence. Diffu-
sion tensor encoding was achieved by using 12 optimum
noncollinear encoding directions with a diffusion weighting
of 1114 s/mm2 and a non-DW T2-weighted reference image.
Other imaging parameters were TE = 78.2 ms, three averages
(NEX: magnitude averaging), and an image acquisition ma-
trix of 120 · 120 over a field of view of 240 · 240 mm2. The
details on other image acquisition parameters are given in
Hanson and colleagues (2013). The acquired voxel size of
2 · 2 · 3 mm was interpolated to 0.9375 mm isotropic dimen-
sions in-plane on the scanner during the image reconstruction
by using the zero-filled interpolation. This is a loss-less inter-
polation, and there is no added blurring. The scanner setting
was used in our previous studies (Chung et al., 2015; Hanson
et al., 2013). To minimize field inhomogeneity and image ar-
tifacts, high-order shimming and fieldmap images were col-
lected by using a pair of non-EPI gradient echo images at two
echo times: TE1 = 8 ms and TE2 = 11 ms.

Table 1. Study Participant Characteristics

Maltreated
Normal
controls Combined

Sample size 23 31 54
Sex (males) 10 18
Age (years) 11.26 – 1.71 11.58 – 1.61
Duration (years of

institutionalization)
2.5 – 1.4

(0.25 to 5.4)
Time of adoption

(years)
3.2 – 1.9

(0.25 to 7.7)
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DTI processing follows the pipeline established in the
previous DTI studies (Hanson et al., 2013; Kim et al.,
2015). DTI was corrected for eddy current-related distor-
tion and head motion via FSL software (www.fmrib
.ox.ac.uk/fsl), and distortions from field inhomogeneities
were corrected by using custom software based on the
method given in Jezzard and Clare (1999) before per-
forming a nonlinear tensor estimation using CAMINO
(Cook et al., 2006). Spatial normalization of DTI data was
done by using a diffeomorphic registration strategy ( Joshi
et al., 2004; Zhang et al., 2007) DTI-ToolKit (DTI-TK;
www.nitrc.org/projects/dtitk). A population-specific tensor
template was constructed. FA was calculated for diffusion
tensor volumes diffeomorphically registered to the study-
specific template. Tractography was done in the normalized
space by using the TEND algorithm and warped into the
study template (Lazar et al., 2003). We used Anatomical
Automatic Labeling (AAL) with 116 parcellations
(Tzourio-Mazoyer et al., 2002) (Fig. 1). The AAL atlas was
warped to the study template via the diffeomorphic image
registration. The two end points of fiber tracts are identified
with respect to 116 parcellations, and the tract lengths are
computed. Any tracts that do not pass through two given
parcellations are removed. Tracts passing through only one
parcellation are also removed.

Structural connectivity matrices

To have a more integrative method for dealing with tract
counts and lengths, we start with the arithmetic and harmonic
means. Given measurements R1, . . . , Rk, their arithmetic
mean A(R1, . . . , Rk) is given by the usual sample mean,
that is,

A(R1, . . . , Rk) =
1

k
+
k

i = 1

Ri:

The tract count and its mean are based on the arithmetic
addition. The harmonic mean H(R1, . . . , Rk) of R1, . . . , Rk

is given by

H(R1, . . . , Rk) =
k

1
R1
þ 1

R2
þ � � � þ 1

Rk

:

The harmonic mean is given by the reciprocal of the arith-
metic mean of reciprocal of measurements:

H(R1, . . . , Rk) = 1=A
1

R1

, . . . ,
1

Rk

� �
:

The harmonic mean has been mainly used in measuring
the rates of a physical system, such as the speed of a car
(Zhang et al., 1999), resistance of electrical circuits
(Chung, 2012). Beyond physical systems, it has been used
in k-means clustering (Zhang et al., 1999), where the har-
monic k-mean is used instead of the usual arithmetic mean.
The harmonic mean has been also used in the integrated like-
lihood for the Bayesian model selection problem (Raftery
et al., 2006). Whenever we deal with rates and ratio-based
measures such as resistance, the harmonic mean provides a
more robust and accurate average compared with the arith-
metic mean and is often used in various branches of sciences.
The use of harmonic means can naturally incorporate the
length of tracts in connectivity.

Motivated by Doyle and Snell (1984), the DTI brain net-
work can be analogously modeled as an electrical system
consisting of series and parallel circuits (Fig. 2). Each fiber
tract may be viewed as a single wire with resistance R that
is proportional to the length of the wire. If two regions are
connected through an intermediate region, they form a series
circuit. In the series circuit, the total resistance R is additive,
so we have

R = R1þ � � � þRk,

where Rk is the resistance of the k-th tract. If multiple fiber
tracts connect two regions, they form a parallel circuit,
where the total resistance is

1

R
=

1

R1

þ � � � þ 1

Rk

: (1)

The total resistance of a series circuit is related to the arith-
metic mean of tract lengths. On the other hand, the total re-
sistance (1) of a parallel circuit is related to the harmonic
mean. Any complex parallel circuits in an electrical system
can be simplified by using a single wire with the equivalent
resistance. Hence, we can simplify whole-brain fiber tracts

FIG. 1. White matter fiber tracts
connecting two regions in Ana-
tomical Automatic Labeling (AAL)
with 116 parcellations. The labels
for parcellations are FAG (left pre-
central), FAD (right precentral),
F1OF (left frontal mid orbital),
F1OG (right frontal mid orbital),
SMAG (left superior motor area),
and SMAD (right superior
motor area).

FIG. 2. Left: series circuit. Right: parallel circuit.
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into a smaller number of equivalent tracts in the model. The
reciprocal of the resistance is then taken as the measure of
connectivity. Smaller resistance corresponds to stronger
connectivity. Figure 3 shows examples of parallel circuits.
If all the tracts are 10 cm in length, the total resistance
becomes 10, 5, and 2 as the number of tracts increases to
1, 2, and 5, respectively. The corresponding connectivities
between A and B are 0.1, 0.2, and 0.5. Thus, if all the tract
lengths are the same, the resistance-based connectiv-
ity is proportional to tract counts. Figure 4 shows various
toy networks. The corresponding resistance matrices are
given next.

The resistance between indirectly connected nodes is 1.
The most redundant network has the smallest resistance.
The reciprocal of the resistance is taken as the strength of
connectivity.

The electronic circuit model can be used in constructing
a simplified but an equivalent brain network. The two end
points of tracts are identified. All the parallel tracts be-
tween any two regions are identified and replaced with a
single tract with the equivalent resistance. This process
completely removes all the parallel circuits. At the end,
the simplified circuit forms a graph with the resistances
as the edge weights.

Consider a tract M consisting of n control points
p1, . . . , pn that are obtained through tractography algorithms.
Consider an inverse map f� 1 that maps the control point pj

onto the unit interval as

f� 1 : pj !
+j

i = 1
k pi� pi� 1 k

+n

i = 1
k pi� pi� 1 k

= tj (2 � j � n), (2)

FIG. 3. Multiple fiber tracts connecting the regions A and B are modeled as a parallel circuit. The resistance in a wire is
proportional to the length of the wire. As more tracts connect the regions in parallel, the resistance decreases and the strength
of connection increases. In this example, we let the resistance of each tract equal the length of the tract. If all the tracts are
10 cm in length, the total resistance becomes 10, 5, and 2 as the number of tracts increases to 1, 2, and 5, respectively. The
connectivity between A and B is defined as the reciprocal of resistance. The corresponding connectivities are 0.1, 0.2, and 0.5.

FIG. 4. Toy networks with different connectivity resistance. The numbers between nodes indicate the length of tracts.
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where k � k is the Euclidean distance. This is the ratio of the
arc length from the point p1 to pj, to p1 to pn. We let this ratio
be tj. We assume f� 1(p1) = 0. The ordering of the control
points is also required in obtaining smooth one-to-one map-
ping. We parameterize the tract on a unit interval:

f : [0, 1]!M:

Then, the total length L(M) of the tractM is given by

L(M) =
Z 1

0

df(t)

and discretely approximated as

L(M) = +
n� 1

i = 1

k f(tiþ 1)� f(ti) k = +
n� 1

i = 1

k piþ 1� pi k :

The connectivity matrices are subsequently determined by
computing the resistance between parcellations (Fig. 5-
middle). We took the reciprocal of the resistance between
the nodes as entries of the connectivity matrix. Smaller resis-
tance corresponds to stronger connection. The method replaces
a collection of parallel circuits with a single equivalent circuit.
This process completely removes all the parallel circuits and
simplifies the complex parallel circuits into a simple circuit.
The simplified circuit naturally forms a three-dimensional
graph with the resistances as the edge weights. Figure 6-
middle shows the mean connectivities by using the graph rep-
resentation.

FA can be also used in constructing the connectivity
matrix. FA may provide additional structural information
that the tractography alone may not provide. Note that
most parcellations are located in the gray matter regions,
where the fiber tract starts and ends, so FA values are
expected to be very low at the nodes. The mass center of
each parcellation is taken as a node of the network. The
mean FA value at the node positions is 0:18� 0:10. In
fact, at each node position, the two-sample t-statistic did
not yield any group differences at 0:05 significance. How-
ever, along the tracts, it is expected that FA values are
higher and they may influence the connectivity. Figure 7
shows an example of how FA values change along 108
tracts between the left superior motor area (SMAG) and
the right superior motor area (SMAD).

We incorporated FA values along the fiber tracts as fol-
lows. By identifying voxels that tracts are passing through,
we were able to linearly interpolate the FA values along
the tracts. If the FA value is larger at a certain part of a
tract, it is more likely that the segment of the tract has
been more stably estimated. Thus, the resistance of a tract
segment can be modeled as inversely proportional to the
FA value but proportional to the length of the segment df
at the point:

dR / df
FA

:

Note that we are using the reciprocal of the resistance as a
tract connectivity metric C, that is,

C =
1

dR
=

FA

df
:

So heuristically, the larger the FA value, the stronger the
connectivity in the tract segment. Subsequently, the total re-
sistance R of the whole tract is defined as

R =
Z 1

0

1

FA(f(t))
df(t): (3)

If the tractography processing is properly done, it is not
possible to have a zero FA value along the obtained tracts,
so the integral (3) is well defined. The integral (3) is discre-
tized as

R = +
n� 1

i = 1

k f(tiþ 1)� f(ti) k
FA(f(ti))

:

In our study, the step size k f(tiþ 1)� f(ti) k is fixed at
0.1 mm. Thus,

R = +
n� 1

i = 1

0:1

FA(f(ti))
:

This is the weighted version of the resistance that incorpo-
rates FA values. The connectivity matrices are then similarly
determined by computing the reciprocal of the weighted re-
sistance between parcellations (Figure 5-bottom). Smaller
resistance corresponds to stronger connection. The pattern
of connectivity matrices is almost identical to the connectiv-
ity without FA values, although the scale and local variations
differ slightly.

How tract counts and length-based connectivity
are related

So far, we have presented three methods for constructing
connectivity matrices in DTI. However, it is unclear as to
how they are related and whether they will give consistent
statistical results at the end. Suppose there are k tracts be-
tween two parcellations. Suppose all the tract lengths are
identical as L. Then, the tract count-based connectivity
gives the connectivity strength k. The length-based connec-
tivity gives the connectivity strength k=L. Under the ideal sit-
uation of the same tract length, the tract length-based
connectivity is proportional to the tract count-based connec-
tivity. For the incorporation of FA values to the connectivity,
if we assume the identical FA values along the tract, we have
FA � k=L as connectivity. All three methods are proportional
to each other. Thus, in the ideal situation of the same tract
length and FA values, the final statistical analyses for three
methods would be identical since most statistical test proce-
dures are scale invariant.

The difference arises in practice where the tract lengths
are all different. This is a difficult problem that we cannot
theoretically address. To begin to deal with this issue, we
checked the robustness of the tract length-based method in
relation to the tract count method. To determine the robust-
ness of the tract length-based metric, we calculated the rela-
tive error in comparison to traditional tract count-based
connectivity in the tract mislabeling problem.

Figure 8 shows a schematic of a possible tract mislabeling
problem. Assume k number of tracts are passing through be-
tween parcellations 2 and 3 (top). In the traditional connectiv-
ity metric, tract count is used as the strength of connectivity.
So, the expected connectivity is CE = k. However, m number
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FIG. 5. Top: mean connectivity matrices for first 32 nodes for normal controls (left) and maltreated children (right) using
tract counts. Middle: the proposed electrical resistance-based connectivity matrices. Although there are connectivity differ-
ences, strong connections are consistently shown in the two populations, indicating the robust nature of the processing pipe-
lines. The highest connectivity is shown between SMAG (left superior motor area) and SMAD (right superior motor area) in
both the groups. Bottom: resistance-based mean connectivity matrices that incorporate FA values. FA, fractional anisotropy.

336

D
ow

nl
oa

de
d 

by
 1

62
.2

30
.9

1.
2 

fr
om

 o
nl

in
e.

lie
be

rt
pu

b.
co

m
 a

t 0
8/

25
/1

7.
 F

or
 p

er
so

na
l u

se
 o

nl
y.



FIG. 6. Mean connectivity of
normal controls and maltreated
children in the graph represen-
tation. The color of nodes and
edges corresponds to the con-
nectivity strength in terms of
tract counts (top), electrical re-
sistance (middle), and electrical
resistance with FA values (bot-
tom). Although there are con-
nectivity differences, strong
connections are consistently
shown in all three models.
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of tracts might be mislabeled to pass through parcellations 1
and 3 (bottom). So, the observed connectivity is given by
CO = k�m. The relative error in the tract count-based connec-
tivity is then (CE �CO)=CE = m=k. Let us determine the rela-
tive error for the tract length-based connectivity metric.

Suppose the i-th tract has length Li. The average tract
length between the parcellations will be denoted as

�L =
1

k
+
k

i = 1

Li:

The resistance of the i-th tract is then given by

Ri = �LþDLi:

where DLi = Li� �L measures the difference from the mean.
Subsequently, the expected total resistance is given by

1

RE

= +
k

i = 1

1
�LþDLi

=
1
�L

+
k

i = 1

1� DLi

L
þ DLi

�L

� �2

þ � � �
 !

: (4)

Since +k

i = 1
DLi = 0, the expected total resistance is

approximately

1

RE

~
k
�L
þ 1

�L
+
k

i = 1

DLi

�L

� �2

(5)

ignoring the cubic and other higher order terms. Similarly,
the observed resistance for k�m tracts is given by

1

RO

= +
k�m

i = 1

1
�LþDLi

~
k�m

�L
þ 1

�L
+

k�m

i = 1

DLi

�L

� �2

: (6)

Hence, the relative error of the new connectivity metric is
given by

1=RE� 1=RO

1=RE

~
mþ+k

i = k�mþ 1
(DLi=�L)

2

kþ+k

i = 1
(DLi=�L)

2
:

The terms +k

i = 1
(DLi=�L)2 and +k

i = k�mþ 1
(DLi=�L)2 are suffi-

ciently relatively small and the relative error is approximately

FIG. 7. FA values along
108 tracts between the left
superior motor area (SMAG)
and the right superior motor
area (SMAD) displayed in
Figure 1. The tracts are rep-
arameterized between 0 and 1
from the left to the right
hemisphere. The red line is
the average of FA values of
all the tracts.

FIG. 8. Schematic showing a possible tract
mislabeling problem. k number of tracts are
expected to pass through between parcella-
tions 2 and 3 (top). However, m number of
tracts might be mislabeled to pass through
parcellations 1 and 3 (bottom).
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m=k, which is the relative error in the tract count-based connec-
tivity. Thus, we expect the error variability in the tract length-
based connectivity to scale proportionally to that of the tract
count-based method. So most likely, all the methods will per-
form similarly in testing the connectivity differences at the
edge level by using the two-sample t-test since the t-test is
scale invariant.

Degree distributions

So far, we have explored the issue of how to build
weighted structural networks by using three DTI features:
tract length, counts, and FA values. Here, we show how to
apply existing, often used graph theoretical features on
such networks. The graph theoretic features are too numer-
ous to apply here. A review on other graph measures can
be found in Bullmore and Sporns (2009). Probably the
most often observed characteristic of the complex network
is the scale-free property (Song et al., 2005). Thus, we will
mainly explore whether structural brain networks also follow
scale-free dynamics among others using node degrees and
degree distributions (Bullmore and Sporns, 2009).

The degree distribution P(k), probability distribution of
the number of edges k in each node, can be represented by
a power law with a degree exponent c that is usually in the
range 2 < c < 3 for diverse networks (Bullmore and Sporns,
2009; Song et al., 2005):

Pp(k) ~ k� c:

Such networks exhibit the gradual decay of tail regions
(heavy tail) and are said to be scale free. In a scale-free net-
work, a few hub nodes hold together many nodes; whereas in
a random network, there are no highly connected hub nodes.
The smaller the value of c, the more important the contribu-
tion of the hubs in the network.

Few previous studies have shown that the human brain
network is not scale free (Gong et al., 2009; Hagmann
et al., 2008; Zalesky et al., 2010). Hagmann and colleagues
(2008) reported that degree decayed exponentially, that is,

Pe(k) ~ e� kk,

where k is the rate of decay (Fornito et al., 2016). The smaller
the value of k, the more important the contribution of the
hubs in the network.

Gong and colleagues (2009) and Zalesky and colleagues
(2010) found that the degree decayed in a heavy-tailed man-
ner by following an exponentially truncated power law

Petp(k) ~ k� ce� kk,

where 1=k is the cut-off degree at which the power law tran-
sitions to an exponential decay (Fornito et al., 2016). This is
a more complicated model than the previous two models.

A direct estimation of the parameters from the empirical
distribution is challenging due to the small sample size in
the tail region. This is probably one of the reasons that
we have conflicting results. To avoid the issue of sparse
sampling in the tail region, the parameters are estimated
from cumulative distribution functions (CDFs) that accu-
mulate the probability from low to high degrees and reduce
the effect of noise in the tail region. For the exponentially
truncated power law, for instance, the two parameters c, k
are estimated by minimizing the sum of squared errors

(SSE) by using the L2-norm between theoretical CDF Fetp

and empirical CDF F̂etp:

(ĉ, k̂) = arg min
c�0, k�0

Z 1
0

jFetp(k)� F̂etp(k)j22 dk:

The estimated best model fit can be further used to com-
pare the model fits among the three models. Much of the
existing literature on graph theory features mainly deals
with the issue of determining whether the brain network fol-
lows one of the laws mentioned earlier (Fornito et al., 2016;
Gong et al., 2009; Hagmann et al., 2008; Zalesky et al.,
2010). However, such a model fit was not often used for ac-
tual group-level statistical analysis. Given two groups, as in
our study, we can fit one specific power model for each
group. For instance, the exponential decay model can be fit-
ted for each group separately and different parameter estima-
tes can be obtained. Then, one may test whether the parameters
are statistically different between the groups.

Results

Node degrees

Based on the three network construction methods, we
computed the connectivity matrices. The connectivity matri-
ces are binarized in such a way that any nonzero edges are
assigned value one. This results in the adjacency matrices.
Since the three connectivity methods only differ in the
strength of the connectivity, the zero entries of the connectiv-
ity matrices exactly correspond across three connectivity ma-
trices. Thus, the three adjacency matrices are identical. The
degrees are then computed by summing the rows of the ad-
jacency matrices. Figure 9 shows the mean node degrees
for all 116 nodes for each group. The edges are the mean
of the adjacency matrices above 0.5. We tested whether
there are any group differences in node degrees by using
the two-sample t-test (controls–maltreated). The maximum
and minimum t-statistics are 2.95 ( p = 0.0024) and �2.08
( p = 0.021). However, none of the nodes show any statistical
significance after accounting for multiple comparisons by
using the false discovery rate (FDR) correction at 0.05.

We also looked at the effects of age and sex on node de-
grees. We tested the significance of sex while taking age
and group as nuisance covariates in a general linear model.
We did not detect any effect of sex at an FDR at 0.05. We
also tested the significance of group difference while ac-
counting for age and sex. We did not detect any group differ-
ence at an FDR at 0.05. However, we detected widespread
age effects while accounting for sex and group variables at
an FDR at 0.05 (Fig. 9D). Almost all nodes (107 nodes out
of total 116 nodes) showed statistically significant degree in-
creases. There was no significant reduction in node degree,
so only positive t-statistic values are shown in the figure.

Due to the large variability associated with node degree,
we were not able to differentiate subtle group differences lo-
cally, although there is a consistent pattern of higher degree
nodes in the controls. A more sophisticated approach is
needed to see the degree differences. For this purpose, we in-
vestigated the degree distribution.

Degree distributions

We propose a two-step procedure for fitting node degree
distribution. The underlying assumption of the two-step
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procedure is that each subject follows the same degree distri-
bution law but with different parameters. In the first step, we
need to determine which law the degree distribution follows
at the group level. This is done by pooling every subject to
increase the robustness of the fit. In the second step, we de-
termine subject-specific parameters.

Step 1. This is a group-level model fit. Figure 10A shows
the degree distributions of the combined subjects in each
group. To determine whether the degree distribution follows
one of the three laws, we combined all the degrees across 54
subjects. Since high-degree hub nodes are very rare, combin-
ing the node degrees across all subjects increases the robust-
ness of the fit. This results in a much more robust estimation
of degree distribution. At the group-level model fit, this is
possible. The maltreated subjects had a higher concentration
in low-degree nodes whereas the controls had high-degree
nodes. Thus, the controls had a much higher concentration

of hub nodes. This pattern is also observed in the CDFs for
each group (Fig. 10B). Again, the maltreated subjects clearly
show a higher cumulative probability at a lower degree.

The CDFs of three laws were then fitted in the least-
squares fashion by minimizing the SSE between the theoret-
ical and empirical CDFs of the combined 54 subjects. The
best fitting model for the power law was when c = 0:2794,
that is,

Pp(k) ~ k� 0:2794

with SSE = 1:01. For the exponential decay law, the best
model was when k = 0:1500, that is,

Pe(k) ~ e� 0:15k

with SSE = 0:046. For the truncated power law, the best
model was when c = 0, k = 0:1500, that is,

FIG. 9. (A, B) The node
size and color correspond to
the mean degree in each
group. The edges are the av-
erage of the mean degrees of
the two nodes thresholded at
0.5. There are consistent de-
gree patterns across the
groups, although there are
local differences. (C) The
two-sample t-statistic of
the degree differences
(controls—maltreated). There
is no statistically significant
node after the FDR correction
at 0.05 level. (D) t-Statistic of
age effect while accounting
for sex and group variables.
There is no significant
reduction in node degree, so
only positive t-statistic values
are shown. Most nodes
passed FDR at 0.05, showing
a widespread connectivity
increase in children. FDR,
false discovery rate.
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Petp(k) ~ k� 0e� 0:15k = e� 0:15k

with SSE = 0:046. Note that the best truncated power law col-
lapses to the exponential decay when c = 0. Thus, our data
support the exponential decay model as the degree distribu-
tion. Figure 10C shows the three estimated models. Note that
the best truncated power law model is identical to the best ex-
ponential decay model for our data.

Step 2. This is the subject-level model fit. We deter-
mined that the degree distribution follows the exponential
decay model at the group level. In the second step, we fitted
the exponential decay model for each subject separately to

see whether there was any group difference in the estimated
parameters. The estimated parameters were 0:1673� 0:0341
for the maltreated children and 0:1458� 0:0314 for the con-
trols. As expected, the controls showed a slightly heavier tail
compared with that of the maltreated children (Fig. 10D).
The two-sample t-test was performed on the parameter
difference, obtaining significant results (t-stat. = 2:40, p <
0.02). The controls had higher-degree hub nodes, which
are nodes with a high degree of connections (Fornito et al.,
2016).

Table 2 shows the list of 13 most connected nodes in the
combined group in decreasing order. The numbers are the av-
erage node degrees in each group. We combined all the sub-
jects in the two groups and computed the mean degree for

FIG. 10. (A) Degree distributions of all the subjects combined in each group. The normal controls have heavier tails for
high-degree nodes, indicating more hub nodes. The maltreated children show a much larger number of low-degree nodes. (B)
The CDFs of all the subjects in each group. (C) Three-parametric model fit on the CDF of the combined 54 subjects. (D) The
exponential decay model is fitted in each group. The estimated parameters are significantly different ( p < 0.02). CDF, cumu-
lative distribution function.
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each node. Then, we selected 13 highest mean degree nodes.
All the 13 most connected nodes showed higher degree val-
ues in the controls without an exception.

Inference on connectivity strength

Based on the tract counts, lengths, and FA values, the con-
nectivity matrices were computed. Instead of thresholding
the connectivity matrices, we looked at whether there were
any network differences at the edge level. Given 116 parcel-
lations, there are totally (116 � 115)=2 = 6670 possible edges
connecting them. If all edges are connected, they form a
complete graph. However, few AAL parcellations are di-
rectly connected to each other. For our study, there are on av-
erage 1813 edges connected across 116 regions. This reduces
the number of tests in multiple comparisons as well as in per-
forming localized node-level statistical inference. Figure 5
shows the mean connectivity for the first 32 nodes for the
three methods. Figure 6 shows the graph representation of
the connectivity matrices in each group.

We determined the statistical significance of the mean
connectivity difference between the groups by performing
the two-sample t-test (maltreated–controls). Only the con-
nections that have p-value less than 0.05 (uncorrected) are
shown in Figure 11 for all three methods (Fig. 11A–C).
For the tract count method, max. t-stat. = 2:82 ( p = 0.0034)
and min. t-stat. =� 2:92 ( p = 0:0026). For the length-based
method, max. t-stat. = 3:57 ( p = 0.0004) and min. t-stat.
=� 3:18 ( p = 0:0012). For the length-based method with FA,
max. t-stat. = 3:45 ( p = 0.0006) and min. t-stat. =� 3:15
( p = 0:0014). Although there are major similarities between
the three methods, no edge passed the multiple comparisons
correction by using an FDR at 0.05. Even at an FDR at 0.1
level, no edge was detected.

Although there is no signal detected by using the three
methods after multiple comparisons correction, they are all
giving similar connectivity maps. Thus, we propose to inte-
grate the three maps, by constructing the summary statistics
map that aggregates the three t-statistics maps. We propose
to use the sum of t-statistics that have been often used to ag-
gregate multiple studies and samples and in meta analysis

(Fan et al., 2004; Reimold et al., 2006). Previously, indepen-
dently distributed t-statistics were used but the approach can
be extended to dependent t-statistics that account for a more
accurate variance estimate (Billingsley, 1995).

Suppose a collection of possibly dependent t-statistic
maps t1, . . . , tn is given. We assume the degrees of the free-
dom (d.f.) of each t-statistic map is sufficiently large, that
is, d.f. ‡30. In our study, three t-statistic maps have 52 as
the degrees of freedom. The t-statistics for large degrees of
freedom are very close to the standard normal distribution,
that is, N(0, 1). For n identically distributed possibly depen-
dent t-statistics t1, . . . , tn, the variance of the sum +n

j = 1
tj is

approximately given by

V +
n

j = 1

tj

 !
� nþ +

i6¼j

E(titj),

where E(titj) is the correlation between ti and t j. We used the
fact Etj = 0. Then, we have the aggregated statistic T given by

T =
+n

j = 1
tjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

nþ+
i6¼j

E(titj)
q ~ N(0, 1):

If the statistics t j are all independent, since t j are close to
the standard normal distribution, E(titj) � 0. The depen-
dency increases the variance estimate and reduces the aggre-
gated statistic value. Unfortunately, it may be difficult to
estimate the correlation directly since only one t-statistic
map is available for each t j. For our study, three depen-
dent t-statistics maps are available. Thus, the variance is
bounded between 3 = 1:732 and 6 = 2:452, and the aggregated

t-statistic value is bounded between +n

j = 1
t j=

ffiffiffiffiffiffiffiffiffi
2:45
p

and

+n

j = 1
t j=

ffiffiffiffiffiffiffiffiffi
1:73
p

. Unfortunately, it may not be easy to estimate

the correlations directly since only one t-statistic map is

available for each t j. In this study, E(titj) is empirically esti-
mated by pooling over the entries of t-statistic maps ti and t j.
The result of the aggregated t-statistic map is given in

Figure 11D. Max. t-stat. = 3:96 ( p-value = 3:76 · 10� 5),

and min. t-stat. =� 3:78 ( p = 7:73 · 10� 5). Only the edges
that passed FDR at 0.1 are shown, but none of them passed
FDR at 0.05.

We looked at the effects of age and sex in the analysis. We
tested the significance of sex by taking age and group as nui-
sance covariates in a general linear model. We did not detect
any effect of sex in all three methods as well as the aggre-
gated t-statistic at an FDR at 0.05. We also tested the signif-
icance of group difference by taking age and sex as nuisance
covariates. We did not detect any group difference in all
three methods and the aggregated t-statistic at an FDR at
0.05. However, we did detect significant and widespread
age effects while accounting for sex and group variables in
all three methods and the aggregated t-statistic even at a
very stringent FDR at 0.01 (Fig. 12). Many major connec-
tions seem to show a significant increase in connectivity
strength. There is no significant reduction in connectivity,
so only positive t-statistic values are shown in the figure.

Discussion and Conclusion

Here, we presented a new integrative connectivity model
for DTI, investigating three different DTI connectivity

Table 2. Thirteen Most Connected Hubs

in the Combined Group

Label
Parcellation

name Combined Controls Maltreated

PQG Precuneus-L 16.11 16.87 15.09
NLD Putamen-R 14.96 15.26 14.57
O2G Occipital-Mid-L 14.44 15.52 13.00
T2G Temporal-Mid-L 4.30 15.16 13.13
HIPPOG Hippocampus-L 13.15 13.94 12.09
FAD Precentral-R 12.85 14.00 11.30
ING Insula-L 12.56 13.61 11.13
FAG Precentral-L 12.43 13.45 11.04
PQD Precuneus-R 12.00 12.03 11.96
PAG Postcentral-L 11.89 12.52 11.04
NLG Putamen-L 11.39 11.68 11.00
F1G Frontal-Sup-L 11.22 12.13 10.00
HIPPOD Hippocampus-R 11.15 11.90 10.13

They are sorted in the descending order of the degree. The con-
trols have more connections without any exception.
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FIG. 11. (A–C) t-Statistic results (maltreated—controls) for three different connectivity methods. Only the connections at
the p-value less than 0.01 (uncorrected) are shown. None of the edges pass FDR even at 0.1. All three methods give similar
results, showing the robustness and consistency. (D) The three t-statistic maps are aggregated to form a single t-statistic. None
of the edges pass FDR at 0.05. Only the edges passing FDR at 0.1 are shown.

FIG. 12. t-statistic map of age effect while accounting for gender and group variables for (A) tract count (B) tract length-
based electrical circuit model (C) electrical circuit model with FA and (D) aggregated t-statistic map of all three methods.
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features: tract count, length, and FA values. The proposed in-
tegrative method can model the length of tracts as the resis-
tance in the electrical circuit; it can also incorporate FA
values into the model. The electrical circuit models with
and without FA values are then compared against the popular
tract count method in characterizing connectivity in the mal-
treated children. The connectivity was quantified at both the
node and edge levels.

Linking graphs to electric networks is not a new idea. In
Doyle and Snell (1984), graph edge weights between nodes
i and j are modeled as conductance dij, which is the inverse
of resistance, that is,

dij =
1

Rij

:

Then, the random walk on the network is defined as a Mar-
kov chain with transition probability

cij =
dij

di

,

where di = +
j ~ i

dij, is the sum of all conductance of edges
connecting node i. The denominator has the effect of normal-
izing the conductance into a proper probability measure. The
transition probability matrix C = (cij) can then be used as a
connectivity matrix. However, this is not the only way to nor-
malize the conductance dij to make it a probability. Instead of
normalizing locally at each node (a column- or row-wise nor-
malization), one alternative is to normalize globally by di-
viding the numerator by either maxij dij or +

i
di. Since the

statistical analyses we used are scale invariant, we should ob-
tain exactly the same results if such global normalization
were performed.

The proposed model is more of an analogy that is based
on an existing electrical circuit model. DTI-based brain net-
works at the macroscopic level may not follow the physical
laws of electrons passing through a wire. It was not our in-
tention to mimic the actual electrons in neuronal fibers by
using electrical circuits. We tried to come up with a math-
ematical model that can incorporate tract counts, lengths,
and FA values into a single connectivity metric and the
electrical circuit model seems to be a reasonable model to
use. There can be many possible combination of methods
to construct connectivity in DTI. Unless we test for every
possible combination, it may be difficult to address the
problem. More research is needed to identify the most rep-
resentative connectivity measure that incorporates various
structural properties obtained from DTI. In this article, we
showed that within some degree, normalizations may not
really matter to the final statistical maps and all three meth-
ods produced similar results.

To demonstrate that the proposed method gives reason-
ably consistent results against the existing tract count
method, we performed a theoretical error analysis in ‘‘How
Tract Counts and Length-Based Connectivity Are Related’’
section and have shown that the error variability in the resis-
tance method scales proportionally to that of the tract count
method. This guarantees that the resulting statistical maps
are more or less similar to each other. Since the statistics are
scale invariant, it is expected that we will have similar connectiv-
ity maps, as shown in Figures 11 and 12, where A (count), B
(length), and C (length with FA) are almost identical. Denote

t1, t2, and t3 as the t-statistics maps from the tract count, length-
based, and FA-value-based methods, respectively. For the two-
sample t-test on group variables, we have corr(t1, t2) =
0:99, corr(t2, t3) = 1:00, corr(t1, t3) = 0:99. For the t-statistics
on age while accounting for group and sex, we have
corr(t1, t2) = 0:99, corr(t2, t3) = 1:00, corr(t1, t3) = 1:00. So
even though three different connectivity metrics are used, we
end up with almost identical connectivity maps.

We determined that the structural brain network follows the
exponential decay law. However, Gong and colleagues (2009)
reported that the brain follows the more complicated truncated
exponential power law by comparing the goodness of fit of the
model by using R2-value. The truncated exponential power
law has two parameters, whereas the exponential decay law
has one parameter. The exponential decay law is a special
case of the truncated exponential power law when c = 0.
Thus, the truncated exponential power law will fit better
than the exponential decay law for any data. However, in
our data, the c = 0 and the truncated exponential power law
collapsed to the exponential decay law. For other datasets,
in general, the truncated exponential power law will fit better.

The group-level statistical results show very similar net-
work differences, although they did not identify any signifi-
cant edges by using an FDR at 0.05. Although few previous
connectivity studies incorporated tract lengths and FA values
(Skudlarski et al., 2008; Kim et al., 2015), we found that the
inclusion of additional DTI features into the connectivity
model does not really change the final statistical results
much. All these DTI features are likely linearly scaling
up. Since most statistics are scale invariant, we may obtain
similar results. To integrate the similar but different statisti-
cal maps, we employed a meta-analytic framework to aggre-
gate the results into a single statistical map. This method
seemed to boost signals when there are weak.
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