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Abstract. We present a unified online statistical framework for quan-
tifying a collection of binary segmentation of mandibles in CT images.
Since the segmentation was done semi-automatically, the processed bi-
nary images were available in a sequential manner. Thus, there was a
need to develop an iterative analysis framework where the final statis-
tical maps are updated sequentially based on an additional image. We
present a method using a unified online algorithm for performing sta-
tistical inference. This proposed method is then applied to identify and
characterize regions of mandible growth during the first two decades of
life.

1 Introduction

The typical implementation of statistical inference in medical imaging requires
that all the images are available in advance. That is the usual premise of existing
medical image analysis tools such as ImageJ, SPM, SFL and AFNI. However,
there are many situations where the entire imaging data set is not available
and parts of imaging data is obtained in a timely sequential fashion. This is a
common problems in medical imaging, where not every subject is scanned and
processed at the same time.

When the image size itself is large, it may not be possible to fit all of the
imaging data in a computer’s memory for statistical analysis, making it necessary
to perform the analysis by adding one image at a time in a sequential manner.
In another situation, the imaging data set may be so large that it is not practical
to use all the images in the dataset but use of a subset of the images. In these
situations, we need to incrementally add stratified datasets one at a time to see
if we are achieving reasonable statistical results. In all the above situations, we
need a way to incrementally update the statistical analysis without repeatedly
running the entire analysis whenever new images are added.

An online algorithm is one that processes its inputted data in a sequential
manner [14]. Instead of processing the entire set of imaging data from the start,
an online algorithm processes one image at a time. That way, we can bypass the
memory requirement and reduce numerical instability. Online algorithms and



2

machine learning are both concerned with problems of making decisions about
the present based on knowledge of the past [5]. Thus, online algorithms are
often encountered in machine learning literature but there are somewhat limited
number of studies in medical imaging.

Motivated by the concept of online algorithm in machine learning, we propose
to advance online statistical inference procedures for the t- and F -tests. The
online version of the F -test requires the development of the online version of
multiple linear regression. The online methods are then used to characterize the
mandible growth using 3D CT images.

2 Probabilistic model of binary segmentation

Let p(x) be the probability of voxel x belonging to some region of interest (ROI)
M such as mandible segmentation. Let 1M be an indicator function defined as

1M(x) =

{
1 if x ∈M,

0 otherwise.

We assume that the shape of ROIM is random (due to noise) and we associate
it with probability p(x):

P (x ∈M) = p(x), P (x /∈M) = 0.

Unless we use probabilistic segmentation techniques such as Gaussian mixture
models [2,3], the probability is simply given as a Bernoulli distribution, i.e., 0 or
1. Then the volume of M is given by

vol(M) =

∫
R3

1M(x) dx.

Since the shape of M is random, the volume is also random. The mean volume
of M is

E vol(M) =

∫
R3

E 1M(x) dx =

∫
R3

p(x) dx.

The integral of the probability map can thus be used as an estimate for the vol-
ume of ROI. Unfortunately, mandible segmentations often have holes and cavi-
ties that have to be patched topologically for accurate volume estimation (Fig.
1). Such topological defects can be easily patched by Gaussian kernel smoothing
(Fig. 2) without resorting to more complicated topology correction methods [11].

Consider a 3-dimensional Gaussian kernel

K(x) =
1

(2π)3/2
exp

(
− ‖x‖

2

2

)
,

where ‖ · ‖ is the Euclidean norm of x ∈ R3. The rescaled kernel Kt is defined as

Kt(x) =
1

t3
K
(x
t

)
.
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Fig. 1: Six representative mandible binary segmentations that are affine regis-
tered to the template space.

Then Gaussian kernel smoothing applied to the probability map p(x) is given
by

Kt ∗ p(x) =

∫
R3

Kt(x− y)p(y) dy, (1)

which is the scale-space representation of probability map p(x) [17,18,19,29,25].

∫
R3

Kt ∗ p(x) dx =

∫
R3

∫
R3

Kt(x− y)p(y) dy dx

=

∫
R3

p(y) dy.

Here, we used the fact that Gaussian kernel is a probability density, i.e.,∫
R3

Kt(x, y) dx = 1
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Fig. 2: Gaussian kernel smoothing of the six representative binary segmentations
in Fig. 1 with bandwidth σ = 20. Smoothing can easily patches cavities and
handles that were present in Fig. 1.

for any y ∈ R3. Thus, the volume estimate E vol(M) is invariant under different
smoothing scales and we have

E vol(M) =

∫
Kt ∗ p(x) dx. (2)

The smoothed probability map Kt∗p(x) can be taken as a more robust probabil-
ity map of whether a voxel belongs to a mandible and can be used as a response
variable in modeling the growth of mandible (Fig. 2).

Note that

|Kt ∗ p(x)| ≤
∫
R3

Kt(x− y)
[

sup
y∈R3

p(y)
]
dy = 1.

The smoothed probability map is still bounded between 0 and 1 so it is not
exactly normally distributed. In order to set up most statistical routines such as
t- or F -tests, which assumes a Gaussian noise model, it is necessary to make to



5

make the smoothed probability map more normal. One way of doing this is to
apply the Fisher or logit transforms. However, since we performed the Gaussian
kernel smoothing with reasonably large bandwidth, which tends to make the
data more Gaussian due to the central limit theorem, it was not necessary to
perform these transforms [2,20].

3 Online algorithm for t-test

By taking one smoothed image at a time as an input, we perform the incremental
statistical inference. Smoothing tends to increase the robustness of statistical
procedures.

Given images x1, · · · , xm, an online algorithm for computing the sample mean
image µm is given by

µm =
1

m

m∑
i=1

xi = µm−1 +
1

m
(xm − µm−1) (3)

for any m ≥ 1. This algorithm avoids accumulating large sums and tend to be
more numerically stable than the following algorithm [13]:

µm =
m− 1

m
µm−1 +

xm
m
.

An online algorithm for computing the sample variance image σ2
m is alge-

braically involved [8,16]. Let

σ2
m =

1

m− 1

m∑
i=1

(xi − µm)2.

Then, it can be shown that

(m− 1)σ2
m − (m− 2)σ2

m−1 = m(m− 1)(µm − µm−1)2.

From (3), it can be iteratively written in terms of previous estimates µm−1, σ
2
m−1

and new data xm as

σ2
m =

m− 2

m− 1
σ2
m−1 +

1

m
(xm − µm−1)2

for m ≥ 2. The algorithm starts with the initial estimate σ2
1 = 0. Figure 3 dis-

plays the result of mean and variance computation using the online algorithms.
For comparing a collection of images within a group, one-sample t-statistic is

used. The segmentation probability p(x) is smoothed using Gaussian kernel Kt

and modeled as a Gaussian with mean µ(x) and variance σ2(x) at each voxel x.
For one sample case, we are often testing

H0(x) : µ(x) = µ0 vs. H1(x) : µ(x) > µ0 (4)
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for some predetermined value µ0. The one-sample t-statistic is then

Tm(x) =
µm − µ0√
σ2
m/m

(5)

at each voxel x. Subsequently, we compute Tm iteratively

T1 → · · · → Tm

in m steps.
For comparing a collection of images between groups, two-sample t-statistic is

used. Given measurements x1, · · · , xm ∼ N(µ1, (σ1)2) in one group and y1, · · · , yn ∼
N(µ1, (σ2)2) in the other group, the two-sample t-statistic for testing

H0 : µ1(x) = µ2(x) vs. H1 : µ1(x) > µ2(x)

at each voxel x is given by

Tm,n(x) =
µ1
m − µ2

n − (µ1 − µ2)√
(σ1)2m/m+ (σ2)2n/n

, (6)

where µ1
m, µ

2
n, (σ1)2m, (σ

2)2m are sample means and variances in each group re-
spectively. Following the proposed online algorithm for computing means and
variances iteratively, we compute Tm,n iteratively

T1,0 → T2,0 → · · · → Tm,0 → Tm,1 → · · · → Tm,n

in m+ n steps.

4 Online algorithm for linear regression

In addition to the above described online algorithm for t-tests, it is possible to
have an online algorithm for linear regression as described below. The online
algorithm for linear regression is itself useful but additionally more useful in
constructing an online algorithm for F -tests in the next section.

Given data vector ym−1 = (y1, · · · , ym−1)′ and design matrix Zm−1, consider
linear model

ym−1 = Zm−1λm−1 (7)

with unknown parameter vector λm−1 = (λ1, λ2, · · · , λk)′. Zm−1 is a matrix of
size (m− 1)× k. Multiplying Z ′m−1 on the both sides we have

Z ′m−1ym−1 = Z ′m−1Zm−1λm−1 (8)

Let Wm−1 = Z ′m−1Zm−1, which is a k × k matrix. In most applications, there
are substantially more data than the number of parameters, i.e., m � k, and
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Fig. 3: The mean (top) and variance (bottom) of probability map in each age
group. We are interested in localizing the regions of probability difference be-
tween the age groups.

Wm−1 is invertible. Then the least squares estimation (LSE) of λm−1 is given
by

λm−1 = W−1m−1Z
′
mym−1.

When new data ym is introduced to the linear model (7), the model is updated
to (

ym−1
ym

)
=

(
Zm−1
zm

)
λm,

where zm is 1 × k row vector. Then multiplying the transpose of the design
matrix, we have

(Z ′m−1 z
′
m)

(
ym−1
ym

)
= (Z ′m−1 z

′
m)

(
Zm−1
zm

)
λm

Z ′m−1ym−1 + z′mym = (Wm−1 + z′mzm)λm

W ′m−1λm−1 + z′mym = (Wm−1 + z′mzm)λm.

Using Woodbury formula [12],

(Wm−1 + z′mzm)−1 = W−1m−1 − cmW
−1
m−1z

′
m,
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where cm = 1/(1 + zmWm−1z
′
m) is scalar. Then we have the explicit online

algorithm for updating the parameter vector:

λm = (I −W−1m−1z
′
mym − cmW−1m−1z

′
mW

′
m−1)λm−1 − cmW−1m−1z

′
mz
′
mym, (9)

where I is the identity matrix of size k × k. Since the algorithm requires Wm−1
to be invertible, the algorithm must start from

λk → λk+1 → · · · → λm.

At each iteration, we need to store k× k matrix Wm−1. In many applications, k
will not be larger than 10 and most likely around 5 or less, which is manageable
as far as computer memory is concerned.

5 Online algorithm for F -test

An online algorithm for the F -test is fairly involved but it is based on the online
algorithm for linear regression. Let yi be image intensity values of the i-th image
and xi = (xi1, · · · , xip)′ to be the variables of interest and zi = (zi1, · · · , zik)′

to be nuisance variables corresponding to the i-th image. We assume there are
m − 1 images to start with. We are interested in testing the significance of the
group variable while accounting for the effect of nuisance covariates. In a general
setting, we have a general linear model [9].

ym−1 = Zm−1λm−1 +Xm−1βm−1,

where Zm−1 = (zij) is (m− 1)× k design matrix, Xm−1 = (xij) is (m− 1)× p
design matrix. λm−1 = (λ1, · · · , λk)′ and βm−1 = (β1, · · · , βp)′ are unknown
parameter vectors to be estimated at the (m− 1)-th iteration. The significance
of the variable of interests is determined by testing

H0 : β = 0 vs. H1 : β 6= 0.

The fit of the reduced model under H0, i.e.,

ym−1 = Zm−1λ
0
m−1,

is measured by the sum of the squared errors (SSE):

SSE0
m−1 = (ym−1 − Zm−1λ

0
m−1)′(ym−1 − Zm−1λ

0
m−1),

where the least squares estimate λ0
m−1 is iteratively estimated using the online

algorithm (9). This provide the sequential update of SSE under H0:

SSE0
k → SSE0

k+1 → · · · → SSE0
m.

Similarly the fit of the full model corresponding to H1 : β 6= 0 is measured
by

SSE1
m−1 = (ym−1 − Zm−1γ

1
m−1)′(ym−1 − Zm−1γ

1
m−1),
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where Zm−1 = [Zm−1Xm−1] is the combined design matrix of size (m−1)×(k+p)
and

γ1
m−1 =

(
λ1
m−1
β1
m−1

)
is the combined parameter vector of size (k + p)× 1. Similarly using the online
algorithm (9), SSE under H1 is sequentially computed as

SSE1
k+p → SSE1

k+1 → · · · → SSE1
m.

Note

SSEm−1
1 = min

λ,β

m−1∑
i=1

(yi − ziλ− xiβ)2 ≤ min
λ

m−1∑
i=1

(yi − ziλ)2 = SSEm−1
0

and thus, SSE0−SSE1 ≥ 0. Larger the value of SSE0−SSE1 is, more significant
the contribution of the coefficients β is. Under H0, the test statistic at the m-th
iteration Fm is given by

Fm =
(SSE0 − SSE1)/p

SSE0/(m− p− k)
∼ Fp,m−p−k. (10)

Which is the F -statistic with p and m− p− k degrees of freedom.

6 Random field theory

Since the t-statistic maps T (x) in (5) and (6) are correlated over x, it is necessary
to correct multiple comparisons using the random field theory [27,10]. Consider
hypotheses,

J0 : µ(x) = µ0 for all x vs. J1 : µ(x) > µ0 for some x. (11)

Note that the hypotheses (4) are at each fixed voxel x, while the hypotheses
(11) are for over all possible voxels in the image. Therefore, (11) is the multiple
comparisons version of (4). We reject J0, if we can reject H0(x) for at least one
pixel x. Then the overall type-I error for continuously indexed hypotheses (11)
is given by

P ( reject J0|J0 is true ) = P
(⋃

x

{T (x) > h}
)

= 1− P
(⋂

x

{T (x) ≤ h}
)

= 1− P
(

sup
x
T (x) ≤ h

)
= P

(
sup
x
T (x) > h

)
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for some h using t random field as a test statistic T (x). The computation for the
supremum distribution of a random field T (x) is based on the expected Euler
characteristic (EC) approach [1,7,23,27,30]. For sufficiently high threshold h, we
have

P
(

sup
x∈M

T (x) > h
)

=
N∑

d=0

µd(M)ρd(h), (12)

where µd(M) is the d-th Minkowski functional or intrinsic volume of M [21].
The d-th intrinsic volume of M is a generalization of d-dimensional volume.

µ0(M) is the Euler characteristic ofM while µN (M) is the volume ofM. For
irregular jagged shapes such as the mandible shapeM, the intrinsic volume can
be estimated using complicated enumeration techniques [10,29]. For t random
field with m− 1 degrees of freedom, EC-density ρd are [21,28]

ρ0(y) =

∫ ∞
y

Γ (m
2 )

((m− 1)π)1/2Γ (m−1
2 )

(
1 +

y2

m− 1

)−m/2

dy,

ρ1(y) = λ1/2
(4 ln 2)1/2

2π

(
1 +

y2

m− 1

)−(m−2)/2
ρ2(y) = λ

4 ln 2

(2π)3/2
Γ (m

2 )y

(m−1
2 )1/2Γ (m−1

2 )

(
1 +

y2

m− 1

)−(m−2)/2
ρ3(y) = λ3/2

(4 ln 2)3/2

(2π)2

(
1 +

y2

m− 1

)−(m−2)/2(m− 2

m− 1
y2 − 1

)
,

where λ = 1
2t2 measures the smoothness of the field, which is masked by smooth-

ing with kernel Kt. The exact expression for the EC density ρd is available for
other random fields such as t, χ2, F fields [26], Hotelling’s T 2 fields [6] and scale-
space random fields [22]. In each case, the EC density ρd is proportional to λd/2,
and it changes depending on the smoothness of the field. For instance, for zero
mean and unit variance Gaussian field Z, we have

ρ0 = P (Z > h) = 1− Φ(h)

ρ1 = λ1/2
e−h

2/2

2π

ρ2 = λh
e−h

2/2

(2π)3/2

ρ3 = λ3/2(h2 − 1)
e−h

2/2

(2π)2
,

where λ measures the smoothness of the field, defined as the variance of the
derivative of the field.

7 Application

The methods were applied to 290 3D CT mandible images from an extant medical
imaging database to localize the regions of growth between 0 to 20 years.
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7.1 Subjects

Using an IRB approved extant imaging database, the dataset selected for this
study consisted of 290 CT images from 290 typically developing individuals
ranging in age from birth to 20 years old. Study inclusion criteria for the dataset
were subjects who were imaged for medical reasons that do not affect growth
and development of the head and neck, and who had a normal bite (Class I).
Additionally, only studies with slice thickness 1.25 and 2.5mm slice thickness
where the entire mandible could be visualized. Only CT images showing the
full mandible without any motion or any other artifacts were selected though
minimal dental artifacts were tolerated. Additional detail on scanner parameter
and inclusion criteria is provided in [15,24]. The age distribution of the subjects
is 9.66 ± 6.34 years. The minimum age was 0.17 years and maximum age was
19.92 years. A total of 160 male and 130 female subjects were divided into 3
groups [11]. Group I (age below 7) contained 130 subjects. , Group II (between
7 and 13) contained 48 subjects. Group III (between 13 and 20) contained 112
subjects.

7.2 Image preprocessing

CT images were visually inspected and determined to capture the whole mandible
geometry withminor dental artifacts. As described in [24], these CT images
were collected retrospectively, following University of Wisconsin-Madison In-
stitutional Review Board (IRB) approval. The mandibles in CT were semi-
automatically segmented using an in-house processing pipeline that involves
image intensity thresholding using the Analyze software package (AnalyzeDi-
rect, Inc., Overland Park, KS). Each of the processed mandibles were exam-
ined visually and edited manually by raters [11]. The segmented binary im-
ages were then affine registered to the mandible labeled as F226-15-04-002-M

using the Advanced Normalization Tools (ANTS) [4] (Fig. 1). The mandible
F226-15-04-002-M served as the initial template.

CT images are inherently noisy due to errors associated with image acquisi-
tion. Compounding the image acquisition errors, there are errors caused by im-
age registration and semiautomatic segmentation. So it is necessary to smooth
out the affine registered segmented images. We smoothed the binary images with
Gaussian kernel with bandwidth σ = 20 voxels (Fig. 2). Gaussian kernel smooth-
ing is often used to negate possible image registration artifacts, and increase the
signal-to-noise ratio. The average of all 290 smoothed binary images was com-
puted and used as the final template where the online statistical analyses are
performed.

7.3 Statistical analysis

The analysis was done contrasting the probability maps between different ages
(groups I to II, II to III, and I to III) by performing two-sample t-tests. Due to
the computational load, the online algorithm was used to compute t-statistics
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and determine p-values. Since the probability map was sufficiently smooth, the
random field theory was used to account for multiple comparisons.

7.4 Results

Age effects. We performed two-sample t-test to assess age effects between the
groups. We tested the statistical significance of the differences in mean probabil-
ity maps while accounting for group variability differences (Fig. 3). The resulting
t-statistic maps are displayed in Fig. 4-top and summarized in Table 1. Since it
is difficult to visualize the 3D results on paper, we have also superimposed the
statistic maps on the initial template F226-15-04-002-M (Fig. 5).

Voxels above or below ±4.41 were considered significant in the t-statistic be-
tween Groups I and II at the 0.05 level after the multiple comparisons correction.
Similarly for other age group comparisons, voxels above or below ±4.43 (between
II and III) and 4.37 (between I and III) were considered significant at the 0.05
level. These regions are colored dark red or dark blue. The dark red regions show
positive growth (bone deposition) and dark blue regions show negative growth
(bone resorption).

Between Groups I and II, significant growth in dentition is present (red re-
gions), while the menton region (chin area), the midpoint of the lower border of
the human mandible, shows negative growth, which is likely reflective of changes
in bone shape/angle and size.the. Between Groups II and III, the condyle show
significant growth in depth (red regions), while again the mental portion of the
mandible (chin, blue region) show significant negative growth. The latter can
only happen if the mandible is changing in shape such as widening or elongat-
ing. By comparing Groups I and III, we were able to increase the contrast of
the growth and detect large clusters of growth regions in almost every part of
the mandible. Statistically significant growth was detected in the condyle and
ramus regions, indicating significant vertical growth/depth of the mandible after
age 13. At the same time, significant negative growth in the mental (chin) region
indicating that the angle of the U-shaped mandible was undergoing changes in
shape and size. Even though the random field theory based thresholding gives
very conservative results, we were able to detect large wide spread regions of
morphometric change. The findings are consistent with our previous study that
used a different technique, i.e., 2D surface deformation [11] and landmarks [15].
This is the first study to demonstrate that the proposed probabilistic map of tis-
sue segmentation can be effectively used to characterize growth/morphometric
change.

Sex effects. Within each group, we tested the significance of sexual dimor-
phism by performing the two-sample t-test between males and females. Note this
analysis further reduces the sample size in each group and subsequently reduces
the effectiveness of the statistical analysis compared to the age effect analysis.
The resulting t-statistic maps are displayed in Fig. 4-bottom and results are
summarized in Table 2. Since 3D statistical maps are superimposed on top of
the initial template F226-15-04-002-M (Fig. 5).
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Table 1: The results of statistical analysis on age effects. < 10−d indicates p-value
is smaller than 10−d, i.e., d decimal places.

Group II - I Group III - II Group III - I

d.f. 176 158 240

Min. t-stat. -5.22 -7.44 -13.61
Corrected p-value 0.019 < 10−6 < 10−25

Max. t-stat. 8.86 6.57 13.50
Corrected p-value < 10−9 0.000052 < 10−24

Table 2: The results of statistical analysis on sex effects. * indicates p-value is
above 0.1 and not significant.

Group I (M-F) Group II (M-F) Group III (M-F)

d.f. 128 46 110

Min. t-stat. -3.33 -2.42 -5.46
Corrected p-value * * 0.016

Max. t-stat. 2.26 2.85 2.99
Corrected p-value * * *

Any regions with voxels above or below ± 4.37, 4.89 and 4.50 (for groups I, II
and III respectively) were considered significant at 0.05 level after the multiple
comparisons correction. There were no sex differences in groups I and II. In group
III, the statistical significance was localized in the ramus on both sides. Note
that this analysis is assessing morphometric differences between the two sexes,
it is not quantifying overall size differences. Such global size differences were
all removed after the affine registration. Thus, the significant signal is basically
detecting relative size differences after removal of global size differences. Such
findings are consistent with general findings on sexual dimorphism that become
evident during puberty.

8 Discussion

The image processing and analysis somewhat resembles the voxel-based mor-
phometry (VBM) widely used in modeling the gray and white matter tissue
probability maps in structural brain magnetic resonance imaging studies [10]. In
VBM, the posterior probability map is further estimated using the prior map.
However, there is no such prior map in mandibles. We propose to distribute our
average probability map as a potential prior map for other researchers so that
they can obtain a better probability map. The advantage of the VBM framework
over the ROI-volumetry approach is that it is completely automated and does
not require artificial partitioning of the anatomical shapes, which introduces un-
desirable bias. Furthermore, it is not restricted to a priori ROI, enabling us to
perform the statistical analysis at each voxel level and to pinpoint the exact
location of the anatomical differences within ROI, even if there are no ROI size
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differences. Although VBM was originally developed for whole brain MRI, we
successfully applied it to mandible growth analysis for the first time.

In analyzing mandible growth, we did not pursue region of interest (ROI)
volumetry. The main shortcoming of the ROI-volumetry is the artificial parti-
tioning of the regions. It is also a time consuming process to partition mandibles
into few ROIs. The ROI-volumetry may dilute the power of detection if the
anatomical difference occurs near the partition boundary [10]. We also did not
use the landmark based method. The landmark based approaches are based on
few selective landmarks and it is difficult to infer in the regions with no land-
marks. In this study, we proposed an alternative voxel-wise approach that avoid
predefined regions of interests (ROI) or landmarks.

Unlike our deformation-based morphometry [11], which used the amount of
displacement between corresponding mesh vertices, VBM uses probability as a
feature. Therefore, we cannot give any direct physical interpretation to the result
of VBM. Since we are not using any deformation vector field, we cannot infer the
direction of growth or visulize any growth directions visually. Deformation-based
morphometry [11] is a 2D surface-based morphometry that directly analyzed how
the mandible surface grows over time using surface deformation. In contrast, the
present study is a 3D volume-based morphometry that indirectly analyzed how
the probability density changed over time at each voxel.

The probability map-based approach is based on the mathematical concept
of probability density and is the indirect measure of the actual bone density.
To directly determine if actual bone deposition or resorption occurs, we need
to use the actual bone density measure and correlate with our VBM results.
This is worth pursuing in further studies as it is of clinical relevance. To address
the issue of computational burden as well as the need for sequential statistical
inference procedures, an online algorithms for performing both one-sample and
two-sample t-test was developed. We have shown the method can be further
extended to linear regressions and the F -test. We expect this study to motivates
researchers in imaging to develop online algorithms for more complex statistical
inference procedures.
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Fig. 4: Top: t-statistics maps showing mandibular growth. The morphometric
changes of the mandible is shown between Groups I and II, II and III, and I
and III. The condyle region show considerable growth in the Group III-I com-
parison. At the same time, the morphometric changes shown as negative growth
in the mental region (chin area) are likely to be reflective of shape and size
changes. Bottom: t-stat. maps showing sex differences in each age group. The
sex difference is not pronounced until age 13.
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Fig. 5: t-stat. maps showing mandible growth. The elongation of mandible is
shown between Groups II and III, and I and III. The condyle regions show
prominent growth in Group III- I comparison. At the same time, the elongation
is shown as negative growth (dark blue) at the back of the front teeth regions.
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Fig. 6: t-stat. maps (male - female) showing sex differences in each age group.
There were no significant sex differences in groups I and II. However, pubertal
and post-pubertal sex difference are evident in group III.
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