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Abstract— When a brain network is constructed by an
existing parcellation method, the topological structure of the
network changes depending on the scale of the parcellation.
To avoid the scale dependency, we propose to construct a
nested hierarchical structural brain network by subdividing
the existing parcellation hierarchically. The method is applied
in diffusion tensor imaging study of 111 twins in characterizing
the topology of the brain network. The genetic contribution
of the whole brain structural connectivity is determined and
shown to be robustly present over different network scales.

I. INTRODUCTION

In many brain connectivity studies, the whole brain is
often parcellated into p disjoint 3D volumes, where p is
usually 116 or less [15], [16]. Anatomical Automatic La-
beling (AAL) is probably the most often used parcellation
scheme for this purpose [15]. AAL parcellation provides 116
labels for cortical and subcortical structures (Figure 1) [15].
Subsequently, either functional or structural information is
overlaid on top of AAL and p× p connectivity matrices that
measure the strength of connectivity between brain regions
are obtained. The major shortcoming of using the existing
parcellations including AAL is the lack of refined spatial
resolution. Even if we detect connectivity differences in large
parcellations, it is not possible to localize what parts of
parcellations are affected without additional analysis, which
reduces the localization power and sensitivity.

Brain networks are fundamentally multiscale. Intuitive
and palatable biological hypothesis is that brain networks
are organized into hierarchies [1]. A brain network at any
particular scale might be subdivided into subnetworks, which
can be further subdivided into smaller subnetworks in an
iterative fashion. Unfortunately, many existing hierarchical
parcellation schemes give raise to conflicting topological
structures from one scale to the next. The topological struc-
ture of parcellation at one particular scale may not carry over
to different scales [16], [1]. Thus, there is a need to develop
a hierarchical parcellation scheme that provide a consistent
network analysis results regardless of the choice of scale.

In this paper, we propose a new nested hierarchical
network using the Courant nodal domain theorem [6]. The
proposed method is related to graph cuts [14] and spectral
clustering [7], [13] based parcellation schemes previously
used in parcellating the resting-state functional magnetic
resonance imaging (fMRI). However, in all these studies,
parcellations are not hierarchical or nested so they produce
conflicting topology over different network scales. Unlike
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Fig. 1. Left: AAL parcellation with 116 regions. Each parcellation is
displayed as a disconnected 3D volume. Red region is the left precentral
gyrus. Middle: the second layer of the hierarchical parcellation with 2×116
regions. Each AAL parcellation is subdivided into two disjoint regions.
Right: the third layer of the hierarchical parcellation with 4× 116 regions.

Fig. 2. Hierarchical parcellation of the left precentral gyrus shown in Figure
1 up to the 8-th layer. At the 8-th layer, we have 28−1 = 128 parcellations.

previous approaches, our proposed approach provides hi-
erarchical nestedness and provide coherent topology across
different spatial resolutions.

As an application, the proposed method was applied to
diffusion weighted imaging (DWI) study of 111 twin pairs in
determining the genetic contribution of topological properties
of network topology.

II. HIERARCHICAL STRUCTURAL BRAIN NETWORK

A. Courant nodal domain theorem

For Laplacian ∆ in a compact domainM⊂ R3, consider
eigenvalues 0 = λ0 < λ1 ≤ λ2 ≤ · · · and eigenfunctions



Fig. 3. Two representative AAL parcellations R1
1 (right precentral gyrus)
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counted between the parcellations.

satisfying ∆ψj(p) = λjψj(p). We then have ψ0(p) =
1/
√
µ(M), where µ(M) is the volume of M. From the

orthogonality of eigenfunctions, we have∫
M
ψ0(p)ψ1(p) dµ(p) = 0,

Thus, ψ1 must be take positive and negative values. The
Courant nodal domain theorem [6], [4] further states that ψ1

divides M into two disjoint regions by the nodal surface
boundary ψ1(p) = 0. When the domain is discretized as a
3D graph, the second eigenfunction ψ1 is called the Fiedler
vector. Applying the nodal domain theorem iteratively, we
can hierarchically partition M in a nested fashion.

B. Hierarchical parcellation

We first convert the binary volume of each parcellation in
AAL into a 3D graph by taking each voxel as a node and con-
necting neighboring voxels. Using the 18-connected neighbor
scheme, we connect two voxels only if they touch each other
on their faces or edges. This yields an adjacency matrix
and the 3D graph Laplacian. The computed Fiedler vector
is then used to partition each 3D AAL parcellation volume
into two disjoint regions (Figures 2). This process continuous
literately in subdividing a region into two smaller regions
hierarchically. Since the number of voxels are not uniform
across AAL parcellations, we are approximately doubling the
number of parcellations at each iteration. There are total of
p = 116 parcellations in layer 1 and 2 · 116 parcellations
in layer 2. At layer 6, there are 3712 parcellations, which
results in 61voxels per parcellation in average.

C. Hierarchical connectivity matrix

At the each layer of the hierarchical parcellation, we
counted the total number of white matter fiber tracts con-
necting parcellations as a measure of connectivity. The
resulting connectivity matrices form a hierarchically nested
convolutional network. Let Sijk denote the total number of
tracts between parcellations Ri

j and Ri
k at the i-th layer

(Figure 3). The connectivity Sijk at the i-th layer is then the
sum of connectivities at the (i+ 1)-th layer (Figure 4), i.e.,

Sijk =
∑

Ri+1
l ⊂Ri

j

∑
Ri+1

m ⊂Ri
k

Si+1
lm .

Fig. 4. The hierarchical connectivity matrices of MZ- (top) and DZ-twins
(bottom). The parts of connectivity matrices of the layers 1, 2 and 3 are
shown. They form a layered convolutional network, where the convolution
is defined as the sum of tracts between sub-parcellations.

Fig. 5. Left: plot of sparsity over the number of pacellations. The sparsity
is measures as the ratio of zero entries over all entries in the connectivity
matrix. Right: plot of total degree of nodes over the number of pacellations.
The vertical axis measures the ratio of the total number of connections over
every possible connection. The plots all show the sparse nature of brain
networks at any spatial scale.

The sum is taken over every subparcellation of Ri
j and

Ri
k. This provide a subject-level connectivity matrix. The

connectivity matrix Si = (Sijk) is expected to be very sparse
at any scale (Figure 5). For 116 × 116 connectivity matrix,
60% of entries are zeros. As we increases the number of
parcellations, the sparsity increases.

III. APPLICATION TO TWIN IMAGING STUDY

A. Subjects and image preprocessing

The method is applied to 111 twin pairs of diffusion
weighted images (DWI) in determining the genetic contri-
bution of structural brain networks. Participants were part
of the Wisconsin Twin Project [9]. 58 monozygotic (MZ)
and 53 same-sex dizygotic (DZ) twins were used in the
analysis. Twins were scanned in a 3.0 Tesla GE Discovery
MR750 scanner with a 32-channel receive-only head coil.
Diffusion tensor imaging (DTI) was performed using a three-
shell diffusion-weighted, spin-echo, echo-planar imaging se-
quence. A total of 6 non-DWI (b=0 s·mm2) and 63 DWI with
non-collinear diffusion encoding directions were collected at
b=500, 800, 2000 (9, 18, 36 directions). Other parameters
were TR/TE = 8575/76.6 ms; parallel imaging; flip angle =
90◦; isotropic 2mm resolution (128×128 matrix with 256
mm field-of-view).



Fig. 6. Top, middle: Edge colors are Spearman’s rank correlations thresholded at 0.3 for MZ- and DZ-twins for different layers. Node colors are the
maximum correlation of all the connecting edges. Bottom: Edge colors are the heritability index (HI). Node colors are the maximum HI of all the connecting
edges. MZ-twins show higher correlations compared to DZ-twins. The node and edge sizes are proportionally scaled.

Image preprocessing follows the pipeline established
in [3]. FSL were used to correct for eddy current related
distortions, head motion and field inhomogeneity [10].
Estimation of the diffusion tensors at each voxel was
performed using non-linear tensor estimation in CAMINO
[11]. DTI-TK was used for constructing the study-specific
template. Spatial normalization was performed for tensor-
based white matter alignment using a non-parametric
diffeomorphic registration method [17]. Each subject’s
tractography was constructed using TEND algorithm,
and tracts were terminated at FA-value less than 0.2 and
deflection angle greater than 60 degree [12].

B. Heritability index

We are interested in knowing the extent of the genetic
influence on the structural brain network and determining its
statistical significance over different network scales. From
the individual connectivity matrix which counts the num-
ber of tracts, we computed pairwise twin correlations. For
discrete tract counts, it is more reasonable to use Spear-
man’s correlation than Pearson’s correlation. Note Spear-
man’s correlation is Pearson’s correlation between the sorted
tract counts. Pearson’s correlation does not work well with
discrete tract counts that often do not necessarily scale at the
constant rate across different subjects and parcellations.

The twin correlations were used to compute the heritability
index (HI) through Falconer’s formula, which determines the

amount of variation due to genetic influence in a population
[8], [5]: MZ-twins share 100% of genes while DZ-twins
share 50% of genes. The additive genetic factor A and the
common environmental factor C are related as

ρMZ = A+ C, ρDZ = A/2 + C,

Thus, HI, as measured as A, is given by HI = 2(ρMZ − ρDZ),
where ρMZ and ρDZ are the pairwise correlation between MZ-
and same-sex DZ-twins (Figure 6).

C. Exact topological inference

We determined the statistical significance of MZ and DZ
correlation network differences using the exact topological
inference [5]. Let GMZ

λ and GDZλ be the binary networks
obtained by thresholding ρMZ and ρDZ at correlation λ. Let
B be a monotone graph function such that

B(GMZ
λ1

) ≤ B(GMZ
λ2

) and B(GDZλ1
) ≤ B(GDZλ2

)

for λ1 ≤ λ2 or λ1 ≥ λ2. The number of connected
components (Betti-0) and the total node degree are such
functions. The test statistic

Dq = sup
1≤j≤q

∣∣B(GMZ
λj

)−B(GDZλj
)
∣∣

is used to determine the statistical significance. The p-value
under the null hypothesis of no network difference is then



given by [5]

P
(
Dq/

√
2q ≥ d

)
= 2

∞∑
i=1

(−1)i−1e−2i
2d2 .

D. Results

At each layer, we performed the exact topological in-
ference. Figure 7 displays the change of the number of
connected components (left), i.e., Betti-0 [5], and the total
node degrees (right) over correlation values λ for MZ- (solid
yellow) and DZ-twins (dotted red). The sudden topological
changes are occurring at the almost same correlation values
regardless of the scale of the network. This demonstrates the
proposed hierarchical network is robust under scale change.
The statistical significances are all less than 0.0002, 0.0002,
0.0002, 0.0002, 0.0002 and 0.0099 from layer 1 to 6 showing
very strong and consistent overall genetic contribution of
topological changes in the structural brain networks.

IV. DISCUSSION

We have developed a new nested hierarchical structural
brain network method. The method was used in determining
the genetic contribution of anatomical connectivity. The
significance of genetic contribution has been reliably shown
in many structural twin brain network studies [5], [2]. The
different level of genetic makeup between MZ- and DZ-
twins provides the fundamental basis for phenotypic brain
variations. Thus the estimation of heritability provides a vi-
able way evaluate the validity of our new network approach.

The proposed framework provides the topologically con-
sistent statistical results regardless of the scale of the par-
cellation. Counting the number of fibers down to very small
subregions raises the question if we have a sufficient density
of streamlines to achieve robustness of the result. The use
of Spearman correlation and supremum in the test statistic
makes our approach very robust even in low streamline
density. Since p-values are all below 0.0002 in layers 1 to
5, up to layer 5 seems to be robust enough for the method.
With the proposed hierarchical network, we get much larger
number of regions across the hierarchical scales than the
number of subjects, which raise the problem of the ratio of
feature dimensionality versus sample size. However, as our
results demonstrated, we are still achieving the robust results.

Hierarchical parcellations are often proposed to deter-
mine the optimal level of scales and to explore across-
scale similarities and invariants [16], [1], [14], [7], [13].
Statistics on finer levels may provide information on robust-
ness and variability of human brain connectivity at these
levels. We believe up to networks scales up to layer 5
(3712 parcellations) provides such robustness. It is hoped the
proposed parcellation and network construction frameworks
will provide more consistent and robust network analysis
across different studies and populations without concern for
spatial resolution.
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