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Abstract. The permutation test is known as the exact test procedure in
statistics. However, often it is not exact in practice and only an approxi-
mate method since only a small fraction of every possible permutation is
generated. Even for a small sample size, it often requires to generate tens
of thousands permutations, which can be a serious computational bottle-
neck. In this paper, we propose a novel combinatorial inference procedure
that enumerates all possible permutations combinatorially without any
resampling. The proposed method is validated against the standard per-
mutation test in simulation studies with the ground truth. The method
is further applied in twin DTI study in determining the genetic contribu-
tion of the minimum spanning tree of the structural brain connectivity.

1 Introduction

The permutation test is perhaps the most widely used nonparametric test pro-
cedure in sciences [1,7,10]. It is known as the exact test in statistics since the
distribution of the test statistic under the null hypothesis can be exactly com-
puted if we can calculate all possible values of the test statistic under every
possible permutation. Unfortunately, generating every possible permutation for
whole images is still extremely time consuming even for modest sample size.

When the total number of permutations are too large, various resampling
techniques have been proposed to speed up the computation in the past. In the
resampling methods, only a small fraction of possible permutations are generated
and the statistical significance is computed approximately. This approximate
permutation test is the most widely used version of the permutation test. In most
of brain imaging studies, 5000–1000000 permutations are often used, which puts
the total number of generated permutations usually less than 1% of all possible
permutations. In [10], 5000 permutations are out of possible

(
27
12

)
= 17383860

permutations (2.9%) were used. In [7], for instance, 1 million permutations out
of

(
40
20

)
possible permutations (0.07%) were generated using a super computer.

In this paper, we propose a novel combinatorial inference procedure that
enumerates all possible permutations combinatorially and simply avoids resam-
pling that is slow and approximate. Unlike the permutation test that takes few
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hours to few days in a desktop, our exact procedure takes few seconds. Recently
combinatorial approaches for statistical inference are emerging as an powerful
alternative to existing statistical methods [1,5]. Neykov et al. proposed a combi-
natorial technique for graphical models. However, their approach still relies on
bootstrapping, which is another resampling technique and still approximate [5].
Chung et al. proposed another combinatorial approach for brain networks but
their method is limited to integer-valued graph features [1]. Our main contribu-
tions of this paper are as follows.

Fig. 1. Monotone sequence x1 < x2 <
· · · < xq is mapped to integers between
1 and q without any gap via φ(t).

(1) A new combinational approach for
the permutation test that does not require
resampling. While the permutation tests
require exponential run time and approx-
imate [1], our combinatorial approach
requires O(n2) run time and exact. (2)
Showing that the proposed method is a
more sensitive and powerful alternative
to the existing permutation test through
extensive simulation studies. (3) A new
formulation for testing the brain network
differences by using the minimum spanning tree differences. The proposed frame-
work is applied to a twin DTI study in determining the heritability of the struc-
tural brain network.

2 Exact Combinatorial Inference

The method in this paper extends our previous exact topological inference [1],
which is limited to integer-valued monotone functions from graphs. Through
Theorem 1, we extend the method to any arbitrary monotone function.

Definition 1. For any sets G1 and G2 satisfying G1 ⊂ G2, function f is strictly
monotone if it satisfies f(G1) < f(G2). ⊂ denotes the strict subset relation.

Theorem 1. Let f be a monotone function on the nested set G1 ⊂ G2 ⊂ · · · ⊂
Gq. Then there exists a nondecreasing function φ such that φ ◦ f(Gj) = j.

Proof. We prove the statement by actually constructing such a function. Func-
tion φ is constructed as follows. Let xj = f(Gj). Then obviously x1 < x2 <
· · · < xq. Define an increasing step function φ such that

φ(t) = 0 if t < x1, φ(t) = j if xj ≤ t < xj+1, φ(t) = q if xq ≤ t.

The step function φ is illustrated in Fig. 1. Then it is straightforward to see that
φ ◦ f(Gj) = j for all 1 ≤ j ≤ q. Further φ is nondecreasing. �

Consider two nested sets F1 ⊂ F2 ⊂ · · · ⊂ Fq and G1 ⊂ G2 ⊂ · · · ⊂ Gq.
We are interested in testing the null hypothesis H0 of the equivalence of two
monotone functions defined on the nested sets:

f(F1) < f(F2) < · · · < f(Fq) vs. g(G1) < g(G2) < · · · < g(Gq).
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We have nondecreasing functions φ and ψ on f(Fj) and g(Gj) respectively that
satisfies the condition Theorem 1. We use pseudo-metric

Dq = max
t

∣
∣φ(t) − ψ(t)

∣
∣

as a test statistic that measures the similarity between two monotone functions.
The use of maximum removes the problem of multiple comparisons. The distri-
bution of Dq can be determined by combinatorially.

Theorem 2. P (Dq ≥ d) = 1−Aq,q

(2qq ) , where Au,v satisfies Au,v = Au−1,v+Au,v−1

with the boundary condition A0,v = Au,0 = 1 within band |u − v| < d and initial
condition A0,0 = 0 for u, v ≥ 1.

Proof. Let xj = φ ◦ f(Fj) and yj = φ ◦ g(Gj). From Theorem 1, the sequences
x1, · · · , xq and y1, · · · , yq are monotone and integer-valued between 1 and q
without any gap. Perform the permutation test on the sorted sequences. If we
identify each xj as moving one grid to right and yj as moving one grid to up,
each permutation is mapped to a walk from (0, 0) to (q, q). There are total

(
2q
q

)

number of such paths and each permutation can be mapped to a walk uniquely.
Note max1≤j≤q

∣
∣xj − yj

∣
∣ < d if and only if |xj − yj | < d for all 1 ≤ j ≤ q. Let

Aq,q be the total number of paths within |x − y| < d (Fig. 2 for an illustration).
Then it follows that Aq,q is iteratively given as Au,v = Au−1,v+Au,v−1 with A0,0 =
0, A0,v = Au,0 = 1, within |u − v| < d. Thus P (Dq < d) = Aq,q

(2qq ) . �

Fig. 2. In this example, Au,v is
computed within the boundary
(dotted red line) from (0,0) to (3,3).

For example, P (D3 ≥ 2) is computed
sequentially as follows (Fig. 2). We start with
the bottom left corner A0,0 = 0 and move
right or up toward the upper corner. A1,0 =
1, A0,1 = 1 → A1,1 = A1,0 + A0,1 → · · · →
A3,3 = A3,2 + A2,3 = 8. The probability is
then P (D3 ≥ 2) = 1 − 8/

(
6
3

)
= 0.6. The

computational complexity of the combinato-
rial inference is O(q2) for computing Aq,q in
the grid while the permutation test is expo-
nential.

3 Inference on Minimum
Spanning Trees

As a specific example of how to apply the method, we show how to test for shape
differences in minimum spanning trees (MST) of graphs. MST are often used in
speeding up computation and simplifying complex graphs as simpler trees [9].
We et al. used MST in edge-based segmentation of lesion in brain MRI [9].
Stam et al. used MST as an unbiased skeleton representation of complex brain
networks [6]. Existing statistical inference methods on MST rely on using graph
theory features on MST such as the average path length. Since the probability
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distribution of such features are often not well known, the permutation test is
frequently used, which is not necessarily exact or effective. Here, we apply the
proposed combinatorial inference for testing the shape differences of MST.

Fig. 3. Randomly simulated correlation matrices with 0, 4 and 5 modules. The plot
shows the number of nodes over the largest edge weights added into MST construction
during Kruskal’s algorithm for 4, 5, 8, 10 and 0 modules.

For a graph with p nodes, MST is often constructed using Kruskal’s algo-
rithm, which is a greedy algorithm with runtime O(p log p). The algorithm starts
with an edge with the smallest weight. Then add an edge with the next smallest
weight. This sequential process continues while avoiding a loop and generates a
spanning tree with the smallest total edge weights. Thus, the edge weights in
MST correspond to the order, in which the edges are added in the construction of
MST. Let M1 and M2 be the MST corresponding to p× p connectivity matrices
C1 and C2. We are interested in testing hypotheses

H0 : M1 = M2 vs. H1 : M1 �= M2.

The statistic for testing H0 vs. H1 is as follows. Since there are p nodes, there are
p−1 edge weights in MST. Let w1

1 < w1
2 < · · · < w1

p−1 and w2
1 < w2

2 < · · · < w2
p−1

be the sorted edge weights in M1 and M2 respectively. These correspond to the
order MST are constructed in Kruskal’s algorithm. w1

j and w2
j are edge weights

obtained in the j-th iteration of Kruskal’s algorithm. Let φ and ψ be monotone
step functions that map the the edge weights obtained in the j-th iteration to
integer j, i.e., φ(w1

j ) = j, ψ(w2
j ) = j. φ and ψ can be interpreted as the number

of nodes added into MST in the j-th iteration.

4 Validation and Comparisons

For validation and comparisons, we simulated the random graphs with the
ground truth. We used p = 40 nodes and n = 10 images, which makes pos-
sible permutations to be exactly

(
10+10

10

)
= 184756 making the permutation test

manageable. The data matrix Xn×p = (xij) = (x1,x2, · · · ,xp) is simulated as
standard normal in each component, i.e., xij ∼ N(0, 1). or equivalently each col-
umn is multivariate normal xj ∼ N(0, I) with identity matrix as the covariance.



Exact Combinatorial Inference for Brain Images 633

Table 1. Simulation results given in terms of p-values. In the case of no network
differences (0 vs. 0 and 4 vs. 4), higher p-values are better. In the case of network
differences (4 vs. 5, 4 vs. 8 and 5 vs. 10), smaller p-values are better.

Combinatorial Permute 0.1% Permute 0.5% Permute 1%

0 vs. 0 0.831 ± 0.187 0.746 ± 0.196 0.745 ± 0.195 0.744 ± 0.196

4 vs. 4 0.456 ± 0.321 0.958 ± 0.075 0.958 ± 0.073 0.958 ± 0.073

4 vs. 5 0.038 ± 0.126 0.381 ± 0.311 0.377 ± 0.311 0.378 ± 0.311

4 vs. 8 0.053 ± 0.138 0.410 ± 0.309 0.411 ± 0.306 0.411 ± 0.306

5 vs. 10 0.060 ± 0.126 0.391 ± 0.283 0.395 ± 0.284 0.395 ± 0.283

Let Y = (yij) = (y1, · · · ,yp) = X. So far, there is no statistical dependency
between nodes in Y . We add the following block modular structure to Y . We
assume there are k = 4, 5, 8, 10, 40 modules and each module consists of c =
p/k = 10, 8, 5, 4, 1 number of nodes. Then for the i-th node in the j-th module,
we simulate

yc(j−1)+i = xc(j−1)+1 + N(0, σI) for 1 ≤ i ≤ c, 1 ≤ j ≤ k (1)

with σ = 0.1. Subsequently, the connectivity matrix C = (cij) is given by
cij = corr(yi,yj). This introduces the block modular structure in the corre-
lation network (Fig. 3). For 40 modules, each module consists of just 1 node,
which is basically a network with 0 module.

Using (1), we simulated random networks with 4, 5, 8, 10 and 0 modules. For
each network, we obtained MST and computed the distance D between networks.
We computed the p-value using the combinatorial method. In comparison, we
performed the permutation tests by permuting the group labels and generating
0.1, 0.5 and 1% of every possible permutation. The procedures are repeated 100
times and the average results are reported in Table 1.

In the case of no network differences (0 vs. 0 and 4 vs. 4), higher p-values are
better. The combinatorial method and the permutation tests all performed well
for no network difference. In the case of network differences (4 vs. 5, 4 vs. 8 and
5 vs. 10), smaller p-values are better. The combinatorial method performed far
superior to the permutation tests. None of the permutation tests detected mod-
ular structure differences. The proposed combinatorial approach on MST seems
to be far more sensitive in detecting modular structures. The performance of
the permutation test does not improve even when we sample 10% of all possi-
ble permutations. The permutation test doesn’t converge rapidly with increased
samples. The codes for performing exact combinatorial inference as well as sim-
ulations can be obtained from http://www.stat.wisc.edu/∼mchung/twins.

5 Application to Twin DTI Study

Subjects. The method is applied to 111 twin pairs of diffusion weighted images
(DWI). Participants were part of the Wisconsin Twin Project [2]. 58 monozy-

http://www.stat.wisc.edu/~mchung/twins
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Fig. 4. Top: Correlation network of MZ- and DZ-twins and heritability index (HI).
Bottom: Minimum spanning trees (MST) constructed using Kruskal’s algorithm on 1-
correlation. Plot: The number of added nodes is plotted over the largest edge weights
of MST for MZ- (solid red) and DZ-twins (dotted black) during the MST construction.
The pseudo-metric D is 46 at edge weight 0.75 (corresponding to correlation 0.25).

gotic (MZ) and 53 same-sex dizygotic (DZ) twins were used in the analysis. We
are interested in knowing the extent of the genetic influence on the structural
brain network of these participants and determining its statistical significance
between MZ- and DZ-twins. Twins were scanned in a 3.0 Tesla GE Discov-
ery MR750 scanner with a 32-channel receive-only head coil. Diffusion tensor
imaging (DTI) was performed using a three-shell diffusion-weighted, spin-echo,
echo-planar imaging sequence. A total of 6 non-DWI (b = 0 s·mm2) and 63
DWI with non-collinear diffusion encoding directions were collected at b = 500,
800, 2000 (9, 18, 36 directions). Other parameters were TR/TE = 8575/76.6 ms;
parallel imaging; flip angle = 90◦; isotropic 2 mm resolution (128× 128 matrix
with 256 mm field-of-view).

Image Processing. FSL were used to correct for eddy current related distortions,
head motion and field inhomogeneity. Estimation of the diffusion tensors at each
voxel was performed using non-linear tensor estimation in CAMINO. DTI-TK
was used for constructing the study-specific template [3]. Spatial normalization
was performed for tensor-based white matter alignment using a non-parametric
diffeomorphic registration method [11]. Each subject’s tractography was con-
structed in the study template space using the streamline method, and tracts
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were terminated at FA-value less than 0.2 and deflection angle greater than 60◦

[4]. Anatomical Automatic Labeling (AAL) with p = 116 parcellations were used
to construct p×p structural connectivity matrix that counts the number of white
matter fiber tracts between the parcellations [8].

Exact Combinatorial Inference. From the individual structural connectivity
matrices, we computed pairwise twin correlations in each group using Spear-
man’s correlation. The resulting twin correlations matrices CMZ and CDZ (edge
weights in Fig. 4) were used to compute the heritability index (HI) through
Falconer’s formula, which determines the amount of variation due to genetic
influence in a population: HI = 2(CMZ − CDZ) [1]. Although HI provides quan-
titative measure of heritability, it is not clear if it is statistically significant. We
tested the significance of HI by testing the equality of CMZ and CDZ . We used
1 − CMZ and 1 − CDZ as edge weights in finding MST using Kruskal’s algo-
rithm. This is equivalent to using CMZ and CDZ as edge weights in finding the
maximum spanning trees. Figure 4 plot shows how the number of nodes increase
as the edges are added into the MST construction. At the same edge weights,
MZ-twins are more connected than DZ-twins in MST. This implies MZ-twins are
connected less in lower correlations and connected more in higher correlations.

Results. At edge weight 0.75, which is the maximum gap and corresponding
to correlation 0.25, the observed distance D was 46. The corresponding p-
value was computed as P (D ≥ 46) = 1.57 × 10−8. The localized regions of
brain that genetically contribute the most can also be identified by identify-
ing the nodes of connections around edge weight 0.75 (0.75 ± 0.2). The fol-
lowing AAL regions are identified as the region of statistically significant MST
differences: Frontal-Mid-L, Frontal-Mid-R, Frontal-Inf-Oper-R, Rolandic-Oper-
R, Olfactory-L, Frontal-Sup-Medial-L, Frontal-Sup-Medial-R, Occipital-Inf-L,
SupraMarginal-R, Precuneus-R, Caudate-L, Putamen-L, Temporal-Pole-Sup-L,
Temporal-Pole-Sup-R, Temporal-Pole-Mid-R, Cerebelum-Crus2-R, Cerebelum-
8-R, Vermis-8 (Fig. 5). The identified frontal and temporal regions are overlap-
ping with the previous MRI-based twin study [7].

Fig. 5. Regions corresponding to the maximum difference between MST of MZ- and
DZ-twins.
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6 Conclusion and Discussion

We presented the novel exact combinatorial inference method that outperforms
the traditional permutation test. The main innovation of the method is that it
works for any monotone features. Given any two sets of measurements, all it
requires is to sort them and we can apply the method. Thus, the method can
be applied to wide variety of applications. For this study, we have shown how to
apply the method in testing the shape differences in MST of the structural brain
networks. The method was further utilized in localizing brain regions influencing
such differences.

In graphs, there are many monotone functions including the number of con-
nected components, total node degrees and the sorted eigenvalues of graph Lapla-
cians. These monotone functions can all be used in the proposed combinatorial
inference. The proposed method is also equally applicable to wide variety of
monotonically decreasing graph features such as the largest connected compo-
nents [1]. If φ◦f is monotonically decreasing, −φ◦f is monotonically increasing,
thus the same method is applicable to decreasing functions. The applications of
other features are left for future studies.
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