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Abstract. The permutation test is an often used test procedure for
determining statistical significance in brain network studies. Unfortu-
nately, generating every possible permutation for large-scale brain imag-
ing datasets such as HCP and ADNI with hundreds of subjects is not
practical. Many previous attempts at speeding up the permutation test
rely on various approximation strategies such as estimating the tail dis-
tribution with known parametric distributions. In this study, we propose
the novel transposition test that exploits the underlying algebraic struc-
ture of the permutation group. The method is applied to a large number
of diffusion tensor images in localizing the regions of the brain network
differences.
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1 Introduction

The permutation test is perhaps the most widely used nonparametric test proce-
dure in sciences [8,19,21,24,27]. It is known as the exact test in statistics since
the distribution of the test statistic under the null hypothesis can be exactly
computed if we can calculate all the test statistics under every possible permu-
tation. Unfortunately, generating every possible permutation for a large-sample
network dataset is still extremely time consuming even for a modest sample size.

When the total number of permutations is large, various resampling tech-
niques have been proposed to speed up the computation in the past [8,19,21,27].
In the resampling methods, only a small fraction of possible permutations is gen-
erated and the statistical significance is computed approximately. This approxi-
mate permutation test is the most widely used version of the permutation test.
In most of brain imaging studies, 5,000–1,000,000 permutations are often used,
which puts the total number of generated permutations usually less than a frac-
tion of all possible permutations. In [27], 5,000 permutations out of possible
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(
27
12

)
= 17, 383, 860 permutations (0.029%) were used. In [21], 1 million permuta-

tions out of
(
40
20

)
possible permutations (0.0007%) were generated using a super

computer. In [18], 5,000 permutations out of possible
(
33
10

)
= 92561040 permuta-

tions (0.005%) were used.
To remedy the computational bottleneck, the tail regions of the distributions

are often estimated using the extreme value theory [11,24]. One main tool in the
extreme value theory is the use of generalized Pareto distribution in approximat-
ing the tail distributions. Unfortunately, without a prior information or model
fit, it is difficult to even guess the shape of tails accurately. Recently, an exact
topological inference approach with quadratic run time was proposed to combi-
natorially enumerate every possible permutation [8,9], but the method is limited
to monotone network features and not applicable to more general settings.

In this paper, we propose a novel transposition test that is motived by the
permutation test. The method is based on the concept of random transpositions
that sequentially update the test statistic. Unlike the traditional permutation
test that takes up to a few days on a computer, our method takes less than
an hour and does not require large computer memory. As an application, the
method is used in determining the statistical significance of the male and female
differences in a large-sample structural brain network study.

2 Preliminary

The usual statistical test setting in brain imaging is a two-sample comparison
[8,19,21]. Consider two ordered sets

x = (x1, x2, · · · , xm), y = (y1, y2, · · · , yn).

The distance between x and y is measured by test statistic f(x,y) such as
t-statistic or correlations. Under the null assumption of the equivalence of x
and y, elements in x and y are permutable. Consider combined ordered set
z = (x1, · · · , xm, y1, · · · , yn) and its all possible permutations Sm+n. Note Sm+n

is a symmetric group of order m + n with (m + n)! possible permutations [14].
Since there is an isomorphism between z and integer set {1, 2, · · · ,m + n}, we
will interchangeably use them when appropriate [17]. Permutation τ ∈ Sm+n is
often denoted as

τ =
(

x1 · · · xm y1 · · · yn

τ(x1) · · · τ(xm) τ(y1) · · · τ(yn)

)

using a single combined sample notation in mathematical literature [10,14].
For instance, consider a permutation of {1, 2, 3, 4} given by τ(1) = 4, τ(2) =

2, τ(3) = 1, τ(4) = 3. Since there are two cycles in the permutation, τ can be
written in the cyclic form as τ = [2][1, 4, 3] indicating 2 is a cycle of length 1
(2 → 2) while 1, 3, 4 are a cycle of length 3 (1 → 4 → 3 → 1) [14]. A cycle of
length 1 is simply ignored and the permutation can be written as τ = [1, 4, 3].
If another permutation is given by π(1) = 1, π(2) = 4, π(3) = 3, π(4) = 2, the
sequential application of π to τ is written as
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π · τ = [1][3][2, 4] · [2][1, 4, 3] = [2, 4] · [1, 4, 3] = [1, 2, 4, 3].

Let us split the permutation τ(z) into two groups with m and n elements

τ(x) = (τ(x1), · · · , τ(xm)), τ(y) = (τ(y1), · · · , τ(yn)).

For test statistic f , the exact p-value for testing a one sided hypothesis is then
given by the fraction

p-value =
1

(m + n)!

∑

τ∈Sm+n

I(
f(τ(x), τ(y)) > f(x,y)

)
, (1)

where I is an indicator function taking value 1 if the argument is true and 0
otherwise. In various brain imaging applications, computing statistic f for each
permutation has been the main computational bottleneck [8,21].

If the test statistic f is a symmetric function such that f(x,y) =
f(φ(x), ψ(y)), where φ ∈ Sm and ψ ∈ Sn, then we only need to consider

(
m+n

m

)

number of permutations in the denominator of (1), which reduces the number
of possible permutations substantially. Still

(
m+n

m

)
is an extremely large num-

ber and most computing systems including MATLAB/R cannot compute them
exactly if the sample size is larger than 100 in each group. The total number of
permutations when m = n is given asymptotically by Stirling’s formula [12]

(
2m

m

)
∼ 4m

√
πm

.

The number of permutations exponentially increases as the sample size increases,
and thus it is impractical to generate every possible permutation. In practice,
up to hundreds of thousands of random permutations are generated using the
uniform distribution on Sm+n with probability 1/

(
m+n

m

)
.

3 Methods

Transpositions. Consider permutation πij that exchanges i-th and j-th ele-
ments between x and y and keeps all others fixed such that

πij(x) = (x1, · · · , xi−1, yj , xi+1, · · · , xm),
πij(y) = (y1, · · · , yj−1, xi, yj+1, · · · , yn).

Such a permutation is called the transposition, which is related to card
shuffling problems [1,2,14]. Consider every possible sequence of transpositions
applied to x and y. If such sequence of transpositions covers every possible ele-
ment in Sm+n, we can perform the permutation test by sequentially transposing
two elements at a time.
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Theorem 1. Any permutation in Sm+n can be reachable by a sequence of trans-
positions.

Proof. Let l = m + n. Suppose τ ∈ Sl. For x ∈ {1, · · · , l}, consider cycle

Cx = [x, τ(x), τ2(x), · · · , τ j(x)]

with τ j+1(x) = x and τd(x) �= x for d ≤ j [14]. Since we are dealing with a finite
number of elements, such j always exists. If τ c(x) = τd(x) for some c ≤ d ≤ j,
we have τd−c(x) = x, thus all elements in the cycle Cx are distinct.

If Cx covers all the elements in {1, · · · , l} we proved the statement. If there
is an element, say y ∈ {1, · · · , l}, that is not covered by Cx, we construct a new
cycle Cy. Cycles Cx and Cy must be disjoint. If not, we have τ i(x) = τ j(y) and
y = τ i−j(x), which is in contradiction. Hence τ = Cx · Cy.

If Cx · Cy does not cover {1, · · · , l}, we repeat the process until we exhaust
all the elements in {1, · · · , l}. Hence any permutation can be decomposed as a
product of disjoint cycles. Then algebraic derivation can further show that cycle
Cx can be decomposed as a product of 2-cycles

Cx = [x, τ j(x)] · [x, τ j−1(x)] · · · [x, τ2(x)] · [x, τ(x)].

A 2-cycle is simply a walk. Hence we proved τ is a sequence of walks. �	
From Theorem 1, any permutation can be reached by a sequence of trans-

positions. Thus, instead of performing uniform random sampling in Sm+n, we
will perform a sequence of random transpositions and compute the test statis-
tic at each transposition. Over random transposition πij , the statistic changes
from f(x,y) to f(πij(x), πij(y)). Instead of computing f(πij(x), πij(y)) directly,
we will compute it from f(x,y) incrementally in constant run time by updat-
ing the value of f(x,y). Note, the statistics computation over transpositions is
slightly different from the usual online computation where new data is added
sequentially. Instead of adding the new data, the existing data is replaced.

Theorem 2. If f is an algebraic function such as addition, subtraction, multi-
plication, division and integer exponents, there exists a function g such that

f(πij(x), πij(y)) = g(f(x,y), xi, yj), (2)

where the computational complexity of g is constant.

The lengthy proof involves explicitly constructing an iterative formula for each
algebraic operation so it will not be shown here. Often used statistics such as
t-statistic and F -statistic are all algebraic functions. If we take computation
involving fractional exponents as constant run time as well, then a much wider
class of statistics such as correlations can all have constant run time. In this
study, we will explicitly construct the t-statistic over transpositions that runs in
constant run time. From this construction, it should be obvious that Theorem2
should be applicable to other test statistics.
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t-Statistic over a Transposition. Two sample t-statistic is a function of sym-
metric functions involving the mean and variance of x and y. If we have the
symmetric functions

ν(x) =
m∑

j=1

xj , ω(x) =
m∑

j=1

(
xj − ν(x)

m

)2

,

the sample mean and variance of x are given by ν(x)/m and ω(x)/(m − 1). We
will determine how ν and ω change over a transposition.

Theorem 3. Functions ν and ω are updated over transposition πij as

ν(πij(x)) = ν(x) − xi + yj

ω(πij(x)) = ω(x) − x2
i + y2

j +
ν(x)2 − ν(πij(x))2

m
.

Proof. The algebraic derivation follows applying the online computations of
updating ν and ω twice. Suppose new data a and b is added to x′ =
(x1, · · · , xm−1) such that xa = (x′, a) and xb = (x′, b). Then we have

ν(xb) = ν(xa) − a + b.

Since ν is symmetric, by identifying a = xi and b = yj , we obtain ν(πij(x)) =
ν(x) − xi + yj . An algebraic derivation can show that

ω(xa) =
m−1∑

j=1

x2
j + a2 − ν(xa)2

m
, ω(xb) =

m−1∑

j=1

x2
j + b2 − ν(xb)2

m
. (3)

From (3), we obtain ω(xb) = ω(xa) − a2 + b2 + ν(xa)
2−ν(xb)

2

m and the result
follows. �	

From Theorem 3, the two-sample t-statistic over a transposition is then com-
puted as follows.

T (πij(x), πij(y)) =
ν(πij(x))/m − ν(πij(y))/n

√
ω(πij(x))+ω(πij(y))

m+n−2

(
1
m + 1

n

) .

Computing two-sample t-statistic with m and n samples directly requires com-
puting the sample means, which is m and n algebraic operations each. Then we
need to compute the sample variances and pool them together, which requires
3m + 2 and 3n + 2 operations. Combining the numerator and denominator in
t-statistic takes 16 operations. Thus, it takes total 3(m + n) + 20 operations to
compute the t-statistic per permutation. In comparison, it only takes 35 opera-
tions to computer t-statistic per transposition. In the case of m = n = 200, the
proposed method can generate 1220 times more permutations compared to the
standard permutation test.
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Fig. 1. Left: Mixing of subject labels over transpositions. Right: The estimated mixing
proportion based on the average of 1000 simulations.

Reducing Mixing Time. Given m = n elements in each group, the standard
permutation test mixes half of elements in one group to the other. Thus, the
mixing proportion is 0.5 on average. On the other, the transposition method
mixes one element at a time, so the mixing is slow but it rapidly catches up.
The rate of mixing can be formally measured by the mixing time, which is
defined as the time until the transpositions are close to the uniform distribution
in Sm+n in the variation distance sense [2,5]. Even though the transposition
method does not guarantee the uniform distribution in Sm+n in the early stage
of transpositions, the method converges to the uniform distribution quickly in
O((m + n)log(m + n)) time [2,5]. This is demonstrated in Fig. 1.

Figure 1-left displays how the subject labels change over transpositions based
on the sample sizes m = n = 200. The first group is indexed between 1 and 200
while the second group is indexed between −1 and −200. At each transposition,
only two subjects are swapped. As the number of transpositions increases, sub-
ject labels rapidly mix up. Figure 1-right shows that how the mixing proportion
converges to 0.5 based on the average of 1000 simulations. On average, about
1000 transpositions are enough to mix all the elements in the two groups uni-
formly. For far smaller sample sizes, to which most brain imaging studies belong,
few hundreds transpositions are more than enough to mix the groups evenly.

To increase the rate of mixing further, we did not start with the original
data x and y but started with a random permutation of x and y. This has the
effect of starting with a completely mixed initial starting data. Then sequentially
applied 5,000 random transpositions. This process is iteratively repeated. Thus,
for every 5,000 random transpositions, one random permutation is intermixed.
In real data, this process is repeated 10,000 times to generate 50 million random
transpositions, which are intermixed with 10,000 permutations.
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Multiple Comparisons. So far we have shown how test statistics change over
transpositions. We now show how the multiple comparison corrected p-values
are affected over transpositions. Suppose x(q) and y(q) are functional data on
edge q in a brain network M. Given statistic map h(q) = f(x(q),y(q)) at the
edge level, the hypotheses of interests are given by

H0 : h(q) = 0 for all q ∈ M vs. H1 : h(q) > 0 for some q ∈ M. (4)

Once the iterative algorithm for computing the test statistic is identified, the
p-value for pointwise inference at each fixed q can be computed iteratively. At
the k-th random transposition, the uncorrected p-value is given as pk. Then pk+1

is computed from iterative formula

(k + 1)pk+1 = kpk + I
(
f(πij(x), πij(y)) ≥ f(x,y)

)
, (5)

where πij changes over random transpositions. Note the p-value for multiple
comparisons over all q is given by

p-value = P
( ⋃

q∈M
{h(q) > c}

)
= 1 − P

( ⋂

q∈M
{h(q) ≤ c}

)

= 1 − P
(

sup
q∈M

h(q) ≤ c
)

for some threshold c [25]. Thus, for multiple comparisons, the formula (5) changes
to

(k + 1)pk+1 = kpk + I
(

sup
q∈M

h(πij(x(q)), πij(y(q))) ≥ sup
q∈M

h(x(q),y(q))
)
.

For alternate hypothesis H1 : h(q) < 0, a similar algorithm can be used for test
statistic infq∈M h(q).

Validation. The real data does not have the ground truth. Thus, we compared
the proposed transposition method against the standard permutation test in
random simulations with the ground truth. We simulated x1, · · · , xm ∼ N(0, 1),
standard normal distribution, and y1, · · · , yn ∼ N(0.1, 1), which provides the
ground truth in computing t-statistic and p-value. The use of t-statistic is the
standard validation framework in many previous permutation test studies [6,
13,19,24]. The simulations were independently performed 100 times and their
average was reported here. In both Simulations 1 and 2 below, we used the same
model but different sample sizes.

Simulation 1 (small sample size). We used m = n = 10. There are exactly(
20
10

)
= 184756 total permutations. The sample sizes are too small to differen-

tiate the group difference. We obtained the t-statistic value of 0.0533, which
corresponds to the exact p-value of 0.479 (Fig. 2a green line). We performed the
standard permutation test with up to 10,000 permutations, which took 0.0926 s
on average on a desktop computer. Within the same run time, we were able
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Fig. 2. (a, c) One representative simulation study showing faster convergence of the
transposition method. The Gaussian distribution provides the exact ground truth. (b,
d) The average relative error against the ground truth. The average of 100 independent
simulations was plotted. (Color figure online)

to generate more than 1,220,000 transpositions. The transposition method uni-
formly converged faster than the standard permutation test due to 122 times
more permutations the transposition method generated (Fig. 2b). The relative
errors of the transposition method are about half the size of the standard method
in most run time.

Simulation 2 (large sample size). We used m = n = 100. The sample sizes are
big enough to differentiate the group difference. We obtained the t-statistic value
of 2.39 and corresponding p-value of 0.0088, which are taken as the ground truth
(Fig. 2c green line). We performed the standard permutation test with up to 1
million permutations, which took 173 s per simulation on average. With the same
run time, the transposition was sequentially done about 125 million times. The
transposition method uniformly converged faster than the standard permuta-
tion test through the whole run time (Fig. 2d). The performance results did not
change much even if we performed more permutations over longer durations with
different simulation parameters.

The computer code for performing the transposition test in the above simu-
lation study is available at http://www.stat.wisc.edu/∼mchung/transpositions.
The MATLAB code is written in such a way that it accepts vector data. For
brain connectivity matrices that are symmetric, vectorizing the upper triangle
entries of connectivity matrices is necessary to reduce the computational time.

http://www.stat.wisc.edu/~mchung/transpositions
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Fig. 3. Average connectivity matrices of females (left) and males (right) between 116
AAL parcellations. The two-sample t-statistic result (female − male). Females have
more structural connections between brain regions than males.

4 Application

Subjects and Preprocessing. Diffusion weighted imaging (DWI) data of 202
female and 154 male subjects (ages 29.2 ± 3.4) were obtained from the Human
Connectome Project (HCP) [16]. The fiber orientation distribution functions
were estimated and apparent fiber densities were exploited to produce reliable
WM/GM/CSF volume maps [7,16]. Subsequently, random seeds on the basis
of the voxel were selected to generate about initial 10 million streamlines per
subject with the maximum fiber tract length at 250 mm and FA larger than 0.06
using MRtrix3 (http://www.mrtrix.org) [22,26]. The Spherical-Deconvolution
Informed Filtering of Tractograms (SIFT2) technique making use of complete
streamlines was subsequently applied to generate more biologically accurate
brain connectivity, which results in about 1 million tracts per subject [20]. Non-
linear diffeomorphic registration between subject images to the template was
performed using ANTS [3,4]. Automated Anatomical Labeling (AAL) was used
to parcellate the brain into 116 regions [23]. The subject-level connectivity matri-
ces were constructed by counting the number of tracts connecting between brain
regions.

Transposition Test. We are interested in testing and localizing the female and
male differences in structural connectivity. Figure 3 displays the result of group
averages and the two sample t-statistic (female − male). Females have more
structural connections between brain regions than males. Since the tract counts
between brain regions do not follow normal distributions, assumption-free non-
parametric procedures such as the permutation test are needed to determine the
statistical significance of t-statistic accurately. We use the proposed transposition
test by sequentially generating 50 million transpositions for 40 min on a desk-
top computer. For multiple comparisons correction, we counted the fraction of
transpositions where the maximum t-statistic value over the whole connections
is above the observed maximum t-statistic value. Any t-statistic value below

http://www.mrtrix.org
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−4.05 and above 3.96 is statistically significant at 0.05 (Fig. 4). The statistically
significant connections are shown in Fig. 5.

Fig. 4. The empirical distributions of minimum t-statistic (dotted blue) and maximum
t-statistic (solid red), which do not follow well known statistical distributions. The
proposed method is used to compute the multiple comparisons corrected p-value. (Color
figure online)

Fig. 5. t-statistic map (female − male). Only the connections that are statistically
significant (thresholded at −4.05 and 3.96) after multiple comparisons correction at
0.05 are shown. Females have more connections in most parts of the brain while males
are more connected in the frontal regions of the brain.

Sex Difference in Connectivity. Females have far more connections in most
parts of the brain while males have more connections in the frontal regions of the
brain. Females also have more bilateral connections between the hemispheres.
This indicates that females use the both sides of the brain while males only use
one side of the brain. Females have more connections in the limbic structures that
regulate emotions. Males have more connections between the back and frontal
regions. Our findings are consistent with the previous structural connectivity
study [15].

5 Discussion

Although we did not show here, it is also possible to construct incremental
procedures for computing other test statistics such as F -statistic and Hotelling’s
T 2 statistic over random transpositions. These problems are left as future studies.
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Compared to other approximate strategies for the permutation test, the pro-
posed method is assumption and model free. The tail approximation method in
[24] has parametric model assumptions to fit the tail regions, so the tail of the
distribution needs to follow some specific pattern. On the other hand, the pro-
posed method has no assumption on the distribution other than permutability
between the groups and offers far more flexibility than [24].

We did not perform the comparisons between the methods in the real data
since there is no ground truth. Thus the comparisons were done on the simula-
tion, where the ground truths are exactly given.
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