
STATISTICAL INFERENCE ON THE NUMBER OF CYCLES IN BRAIN NETWORKS

Moo K. Chung1, Shih-Gu Huang1, Andrey Gritsenko1, Li Shen2, Hyekyoung Lee3

1University of Wisconsin, Madison, USA
2University of Pennsylvania, Philadelphia, USA

3Seoul National University, Seoul, Korea

ABSTRACT
A cycle in a graph is a subset of a connected component with
redundant additional connections. If there are many cycles
in a connected component, the connected component is more
densely connected. While the number of connected compo-
nents represents the integration of the brain network, the num-
ber of cycles represents how strong the integration is. How-
ever, enumerating cycles in the network is not easy and often
requires brute force enumerations. In this study, we present
a new scalable algorithm for enumerating the number of cy-
cles in the network. We show that the number of cycles is
monotonically decreasing with respect to the filtration values
during graph filtration. We further develop a new statistical
inference framework for determining the significance of the
number of cycles. The methods are applied in determining
if the number of cycles is a statistically significant heritable
network feature in the functional human brain network.

1. INTRODUCTION

The modular structure or connected components are one of
the fundamental topological features of brain network. Brain
networks with higher number of connected components have
many disjoint clusters and the transfer of information will
likely to be impeded. Modular structures are often studied
through the Q-modularity in graph theory [1, 2] and the 0-th
Betti number in persistent homology [3, 4, 5]. The 0-th Betti
number, the number of connected components, is considered
as the first order topological feature and often not sensitive
enough to discriminate more subtle topological differences.

Persistent homology provides a coherent framework for
obtaining higher order topological features beyond modular
structures [6, 7]. A graph can be treated as the 1-skeleton
of a simplicial complex, where the 0-dimensional hole is the
connected component, and the 1-dimensional hole is a cycle.
The number of k−dimensional holes is called the k-th Betti
number and denoted as βk [3, 8, 9, 10]. In applying persis-
tent homology to a brain network, it is necessary to threshold
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edge weights somewhere and make the network into a binary
graph. Unfortunately, the choice of threshold affects the topo-
logical structure of the network. By performing graph filtra-
tion that builds the binary graphs at every possible threshold,
we bypass the problem of arbitrary thresholding [5].

Motivated by persistent homology, we will study higher
order topological changes of brain networks using cycles. The
cycle structure in networks is important for information prop-
agation, redundancy and feedback loops [11]. If a cycle ex-
ists in the network, the information can be delivered using
two different redundant paths and interpreted as strongly con-
nected. Alternately, it can be viewed as diffusing the spread
of information and creating information bottlenecks [12].

While cycles in a network have been widely studied in
graph theory, especially in path analysis, they are rarely used
in brain network analysis [13]. Existing graph analysis pack-
ages such as Brain Connectivity (http://sites.google.
com/site/bctnet) do not provide any tool related to cy-
cles. Cycles are often computed using the brute-force depth-
first search algorithm [12]. Few recent brain network studies
on cycles are all based on persistent homology computation,
which can be computationally involving [3, 8].

The main contributions of the paper are as follows. 1) We
present a new scalable algorithm for computing the number of
cycles in the network quickly. 2) We establish the monotonic
property of the number of cycles over graph filtration for the
first time. The monotonicity is then used in constructing a test
statistic for topologically differentiating two networks. 3) The
method is applied to the large-scale resting-state twin fMRI
study in determining the heritability of the number of cycles.

2. METHODS

2.1. Monotonicity of number of cycles

Given network X = (V,w) with node set V and edge weight
w = (wij) between nodes i and j, define binary network
Xε = (V,wε), where any edge weight of w less than or equal
to ε is made into zero while edge weight larger than ε is made
into one. Then we have graph filtration [5, 14]

Xε0 ⊃ Xε1 ⊃ · · · ⊃ Xεq , (1)
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Fig. 1. Schematic of how Betti numbers change over graph
filtration. When each edge is removed from the smallest to the
largest edge weights, the number of connected components
(β0) increases while the number of cycles (β1) decreases. At
filtration value 0.1, ADB, DCB and ADCB are all cycles but
ADCB is the sum of ABD and DCB. So only 2 algebraically
independent cycles are counted as β1 in persistent homology
[3, 8]. At filtration value 0.2, ADCB is a cycle.

where ε0 < ε1 < · · · < εq are q unique edge weights (Figure
1). Note that X−∞ is a complete graph while X∞ is the node
set V . By increasing the threshold value, we are thresholding
at higher connectivity so more edges are removed.

Theorem 1 In a graph, Betti numbers β0 and β1 are mono-
tone over filtration (1).

Proof. Under the graph filtration, the edges are deleted one at
a time. Since an edge has only two end points, the deletion
of the edge disconnects the graph into at most two. Thus, the
number of connected components (β0) always increases and
the increase is at most by one. The Euler characteristic χ of
the graph is given by χ = β0−β1 = p− q, where p and q are
the number of nodes and edges respectively [15]. Thus,

β1 = β0 − p+ q.

Note p is fixed over the filtration but q is decreasing by one
while β0 increases at most by one. Hence, β1 always de-
creases and the decrease is at most by one. �

Figure 1 illustrates how Betti numbers monotonically change
for a toy example. Once we compute β0 numbers, β1 number
is simply given by β0 − p+ q.

2.2. Inference on Betti numbers β0 and β1

The graph filtration can be quantified using monotone Betti
numbers:

β0(Xε0) ≤ β0(Xε1) ≤ · · · ≤ β0(Xεq ),
β1(Xε0) ≥ β1(Xε1) ≥ · · · ≥ β1(Xεq ).

Given two networks X 1 = (V,w1) and X 2 = (V,w2),
Kolmogorov-Smirnov (KS) distance between X 1 and X 2 is

defined as

Dq(X 1,X 2) = sup
0≤k≤q

∣∣βi(X 1
εk
)− βi(X 2

εk
)
∣∣,

The distance Dq is motivated by Kolmogorov-Smirnov (KS)
test for determining the equivalence of two cumulative distri-
bution functions [5]. The distribution onDq can be computed.

Theorem 2 [5, 14]

lim
q→∞

P
( Dq√

2q
≥ d
)
= 2

∞∑
i=1

(−1)i−1e−2i
2d2 .

When q ≥ 100, 10 terms are more than sufficient for con-
vergence. KS-distance method does not assume any statis-
tical distribution on graph features other than that they have
to be monotonic. The MATLAB code for computing Betti
numbers, Dq and the corresponding p-values are available at
http://www.stat.wisc.edu/˜mchung/twins.

3. APPLICATION

3.1. Resting-state fMRI

We used the resting-state fMRI of genetically confirmed m =
131 monozygotic (MZ) twin pairs and n = 77 same-sex dizy-
gotic (DZ) twin pairs from the Human Connectome Project
[16]. fMRI data has undergone spatial and temporal prepro-
cessing including motion and physiological noise removal.
Using the resting-state fMRI, we employed the Automated
Anatomical Labeling (AAL) template to parcellate the brain
volume into 116 regions [17]. The fMRI were then averaged
within each brain region for each subject. The averaged fMRI
signal in each parcellation is temporally smoothed as follows.

Given fMRI time series at the i-th parcellation ζi(t) at
time t, we scaled it to fit to unit interval [0, 1]. Then sub-
tracted its mean over time

∫ 1

0
ζi(t) dt. The resulting scaled

and translated time series was represented as

ζi(t) =

k∑
l=0

dliψl(t), t ∈ [0, 1],

where ψ0(t) = 1, ψl(t) =
√
2 cos(lπt) are cosine basis func-

tions and dli are coefficients estimated in the least squares
fashion [18]. For our study, k = 119 was used such that
fMRI were compressed into 10% of the original data size. The
resulting Fourier coefficient vector di = (d0i, d1i, · · · , dki)
was used to represent the fMRI in each parcellation as a vec-
tor feature in the frequency domain.

3.2. Twin correlations

The subject level connectivity matrix C = (cij) is computed
by correlating 120 features in the frequency domain. Between

114



0 0.2 0.4 0.6 0.8 1
ε : Correlation threshold

0

20

40

60

80

100

120

β
0: C

on
ne

ct
ed

 c
om

po
ne

nt
s MZ

DZ

0 0.2 0.4 0.6 0.8 1
ε : Correlation threshold

0

1000

2000

3000

4000

5000

6000

7000

β
1: C

yc
le

s

MZ
DZ

Fig. 2. Betti-plots showing Betti numbers over correlation ε
as filtration. MZ-twins (dashed line) shows more higher cor-
relation connections and cycles compared to DZ-twins (solid
line). The maximum gaps between the plots are KS-distances.

i- and j-th parcellations, the connectivity is measured by cor-
relating di and dj over 120 features, i.e.,

cij = corr(di,dj).

Let (c1kij , c
2k
ij ) be the connectivity of the k-th twin pair at the

edge level. Let c1ij = (c11ij , · · · , c1mij ) and c2ij = (c21ij , · · · , c2mij )
be the connectivity of all the MZ-twins. Then the MZ twin
correlation is computed as

cMZ
ij = corr(c1ij , c

2
ij),

which is the correlation of correlations. Similarly we can
compute the DZ twin correlation cDZij . However, since there
is no preference in the order of twins, twins are randomly per-
muted in a pairwise fashion in computing the twin correlation
and their average is taken as the estimate for twin correlation.
Due to high correlation between pairs, only 35 and 52 permu-
tations were required for MZ- and DZ-twins to guarantees the
convergence within 4 decimal places in terms of the mean of
absolute error of the entries. The resulting group level twin
correlations matrices are CMZ = (cMZ

ij ) and CDZ = (cDZij ).
The heritability index (HI) is then estimated using the stan-
dard ACE-model, which determines the amount of variation
due to genetic influence in a population as [19]

HI = 2(CMZ − CDZ).

The statistical significance of HI is determined by computing
the KS-distance between CMZ and CDZ [5].

3.3. Results

We used 101 filtration values between 0 and 1 at 0.01 incre-
ment. This gives a reasonably accurate estimate of the max-
imum gap in the βi-plots between the twins (Figure 2). For
β0-plots, the maximum gap is 84, which gives the p-value
smaller than 10−26. For β1-plots, the maximum gap is 3627,
which gives the p-value smaller than 10−32. At the same cor-
relation value, MZ-twins are more similar in their connectiv-
ity patterns, and thus have more high correlation edges than

DZ-twins. Also MZ-twins have more cycles than DZ-twins.
Such topological differences are contributed to heritability.

Figure 3 displays the HI that gives 100% heritability. The
most heritable connections include the left frontal gyrus, left
and right middle frontal gyri, left superior frontal gyrus, left
parahippocampal gyrus, left and right thalami, left and right
caudate nuclei among other regions. The left and right cau-
date nuclei are identified as most heritable hub nodes.

4. DISCUSSION

The consistent presence of cycles across different networks is
likely to be the network signal. We presented a new property
of the monotonicity of the number of cycles over graph filtra-
tion. The number of cycles was used to characterize the high
order topological changes of the brain network. The existing
inference procedure was adapted for the number of cycles.

The proposed framework compute the number of cycles
in graph filtration without identifying cycles. Theoretically it
is possible to identify each cycle that is removed by carefully
tracing at what filtration values, cycles disappear. This is left
as a future study.

Although we did not provide a comparison against base-
line approaches, KS-distance was compared against other topo-
logical distances and matrix norms before [14].
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