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We review the heat kernel smoothing techniques for denoising and re-
gressing data in irregularly shaped domains embedded in Euclidean
spaces. This is a problem often encountered in functional data analysis
and medical imaging. In this chapter, we present a unified mathematical
framework based on the eigenfunctions of the Laplace-Beltrami opera-
tors defined on irregular domains. Numerical implementation issues will
be addressed as well. Various examples will be presented. We also present
a few new theoretical results on the properties of heat kernel smoothing.
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1. Introduction

For irregular domains often encountered in images, boundary shapes are

often very complex. This causes the geometric shape of the boundary to

strongly affect the shape of Gaussian kernels. In such irregular domains, the

use of Gaussian kernels may not be appropriate. So there is need to incor-

porate the shape of the boundary into the shape of kernels. The traditional

methods include domain embedding methods which embed the domain of

interest within a 2D rectangle or 3D box, where the usual sine and co-

sine basis are known [8]. Such methods still introduce the ringing artifacts

(Gibbs phenomenon) along the boundary [12].

Heat kernel has been popular in shape modeling in recent years. Heat

kernel is often used as a natural generalization of the Gaussian kernel. [3, 4]

used the truncated Gaussian kernel in locally approximating the heat kernel

in manifold learning. [45] used the heat kernel as a multiscale shape feature

for surface meshes. [6] used the heat kernel signature (HKS), which is the

trace of heat kernel, as an isometry-invariant multi-scale shape descriptor

in computer vision. [31] computed the heat kernel on graphs using graph

Laplacian for face representation. Also there have been significant develop-

ments in kernel methods in machine learning [39, 34, 41, 44, 51]. Most kernel

methods in machine learning deal with the linear combination of kernels as

a solution to penalized regressions. In most applications, the discrete ver-

sions of heat kernel, which in turn uses the eigenvector of graph Laplacian,

are often used [42]. The connection between the eigenfunctions of contin-

uous and discrete Laplacians has been well established by several studies

[23, 46].

Heat kernel smoothing was introduced in [17, 16] to filter out noisy corti-

cal thickness defined on brain surface mesh vertices obtained from magnetic

resonance images [17, 16] approximates the heat kernel locally by iteratively

applying Gaussian kernel with smaller bandwidth. For recent spectral for-

mulation to heat kernel smoothing [40, 15] constructs the heat kernel an-

alytically using the eigenfunctions of the Laplace-Beltrami (LB) operator,

avoiding the need for the linear approximation using Gaussian kernel.

We will start by reviewing the basic spectral geometry related to heat

kernel.
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Fig. 1. Six representative eigenfunctions on human amygdala surface. The number j

represents eigenfunction ψj . The eigenfunctions of the Laplace-Beltrami operators are
computed using the cotan formulation.

2. Laplace-Beltrami eigenfunctions

Let ∆ be the Laplace-Beltrami (LB) operator in a reasonably smooth man-

ifold M in Rn. The LB-operator associated with the Riemannian metric

g = (gij) is then given by [29, 33]

∆ =
1

|g|1/2
∑
i,j

∂

∂xi

(
|g|1/2gij ∂

∂xj

)
. (2.1)

Solving the eigenvalue equation

∆ψj(p) = λψj(p), p ∈M, (2.2)

we obtain ordered eigenvalues

0 = λ0 < λ1 ≤ λ2 ≤ · · ·

and corresponding eigenfunctions ψ0, ψ1, ψ2, . . . . The first eigenvalue and

eigenfunction are trivially given as λ0 = 0 and ψ0 = 1/
√
µ(M), where

µ(M) is the volume of M. It is possible to have multiple eigenfunctions

corresponding to the same eigenvalue. The multiplicity usually happens

whenM has symmetry. However, if there is no symmetry, all the eigenvalues
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Fig. 2. Eigenfunctions of the Laplacian in L-shaped domain.

are unique. The eigenfunctions ψj form an orthonormal basis in L2(M)

[30, 38].

Other than ψ0 = 1/
√
µ(M), there is no known close form expressions

for eigenfunctions. For most shape modeling applications in medical imag-

ing and computer vision, the underlying domains can be discretized using

triangular or tetrahedral meshes; we can discretize the Laplace-Beltrami op-

erator using the cotan formulation as the generalized eigenvalue problema

[18, 35, 40]:

Cψ = λAψ, (2.3)

where C is the stiffness matrix, A is the mass matrix, and ψ is the un-

known eigenfunction evaluated at mesh vertices. The details on the matri-

ces C and A can be found in [11, 18, 35]. For tetrahedral meshes in R3, a

similar cotan discretization is available [20, 47, 48]. Figure 1 displays few

LB-eigenfunctions on the triangle meshes of human amygdala. Figure 2

displays the LB-eigenfunctions on the L-shaped domain.

2.1. Graph Laplacian

In computer vision and other sciences, the discrete version of Laplace-

Beltrami operator is often used on graph data structures. Even if we do

aMATLAB code is available at http://brainimaging.waisman.wisc.edu/~chung/lb.
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not have graphs, by subdividing regions into a collection of connected poly-

gons, we can obtain graph Laplacian. Almost all the result of continuous

counterpart is carried over to the discrete version. Here we explain the main

difference in the graph Laplacian.

Let G = {V,E} be a graph with vertex set V and edge set E. We will

simply index the node set as V = {1, 2, . . . , p}. If two nodes i and j form

an edge, we denote it as i ∼ j. Let W = (wij) be the edge weight. The

adjacency matrix of G is often used as the edge weight. Various forms of

graph Laplacian have been proposed [10] but the most often used standard

form L = (lij) is given by

lij =


−wij , i ∼ j∑
i6=j wij , i = j

0, otherwise.

(2.4)

Even cotan discretization of LB-operator can be written in the form (2.4)

[11, 18]. The graph Laplacian L can then be written in a matrix form

L = D −W,

where D = (dij) is the diagonal matrix with dii =
∑n
j=1 wij . For this

chapter, we will simply use the adjacency matrix so that the edge weights

wij are either 0 or 1.

Unlike the continuous Laplace-Beltrami operators that may have pos-

sibly infinite number of eigenfunctions, we have up to p number of

eigenvectors

ψ1, ψ2, . . . , ψp

satisfying

Lψj = λjψj (2.5)

with

0 = λ1 < λ2 ≤ · · · ≤ λp.

The eigenvectors are orthonormal, i.e., ψT
i ψj = δij , the Kroneker’s delta.

The first eigenvector is trivially given as ψ1 = 1/
√
p with 1 = (1, 1, . . . , 1)T.

All other higher order eigenvalues and eigenvectors are unknown ana-

lytically and have to be computed numerically. Using the eigenvalues and

eigenvectors, the graph Laplacian can be decomposed spectrally. From (2.5),

LΨ = ΨΛ, (2.6)
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where Ψ = [ψ1, . . . , ψp] and Λ is the diagonal matrix with entries λ1, . . . , λp.

Since Ψ is an orthogonal matrix,

ΨΨT = ΨTΨ =

p∑
j=1

ψjψ
T
j = Ip,

the identify matrix of size p. Then (2.6) is written as

L = ΨΛΨT =

p∑
j=1

λjψjψ
T
j .

This is the restatement of the singular value decomposition (SVD) for

Laplacian.

2.2. Laplacian in positive definite symmetric matrices

Recently in relation to brain network analysis and in diffusion tensor imag-

ing, positive definite symmetric (PDS) matrices have become fundamental

object of interest. PDS matrices would be considered as an irregular domain

since the usual Euclidean geometry does not apply. Let Pm ⊂ Rm(m+1)/2

be the space of positive definite symmetric matrices of size m×m.

For Y = (yij) ∈ Pm, let dY = (dyij). Following [32], we will put the

following metric on Pm:

(ds)2 = tr
(
(Y −1dY )2

)
.

Vectorize n = m(m+1)/2 unique entries of Y as (x1, x2, . . . , xn)′ and write

ds2 in the standard quadratic form as

(ds)2 =
∑

gijdxidxj .

For Pm, this can be more compactly written as follows. Define the matrix

of differential operators ∂ as

∂Y =
(1

2
(1 + δij)

∂

∂yij

)
,

where δij is Kronecker’s delta. With this operator, the LB-operator ∆ in

the local coordinates yij is given by [24, 36]

∆ = tr(Y ∂Y )2. (2.7)
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Fig. 3. Heat kernel in the L-shaped domain for two different bandwidths σ = 0.01, 0.1.

We have used degree 70 expansions but the shape is almost identical if we use higher
degree expansions.

Note that the Laplacian in the coordinates of the eigenvalues of y is more

complicated from [28]. The eigenfunction of the Laplacian (2.7) is difficult

to compute in practice and involves Zonal spherical functions [36, 37].

Example 2.1: Consider P1 = R+, the positive real line. Note that the

Laplacian is parameterization invariant. Let y = ex to be the parameter-

ization of P1. It maps R to R+. Then dy = ydx and with respect to the

original coordinates y, we obtain (2.8).

∆ =

(
d

dx

)2

=

(
y
d

dy

)2

= y
d

dy
+ y2 d

2

dy2
. (2.8)

Note Laplacian (2.8) in P1 differs from the usual Laplacian d2

dy2 for the whole

real line. This additional algebraic complexity of the Laplacian makes the

computation of eigenfunctions of even 1D case (2.8) complicated. In fact,

we need to solve

y
d

dy
ψj(y) + y2 d

2

dy2
ψj(y) = λjψj(y). (2.9)

In practice, it might be much easier to simply discretize the differential

equation (2.9) and solve using the finite element method.
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3. Heat kernel

The heat kernel Kσ(p, q) is defined as

Kσ(p, q) =
∞∑
j=0

e−λjσψj(p)ψj(q), (3.1)

where σ is the bandwidth of the kernel. The detailed mathematical exposi-

tion of heat kernel is given in [5] and [38]. Note that the heat kernel is the

fundamental solution of an isotropic heat diffusion.

Symmetric kernel G(p, q) defined on M is positive definite if

n∑
i,j=1

G(pi, qj)cicj > 0

for all choices of pi, qj ∈ M and nonzero ci, cj ∈ R. Generalizing the defi-

nition, kernel G(p, q) is integrally positive definite on M if∫
M
G(p, q)f(p)f(q) dµ(p)dµ(q) > 0

for any f ∈ L1(M), the space of integrable functions. For a continuous

kernel, these two definitions can be shown to be equivalent.

The heat kernel is a probability distribution, i.e.,∫
M
Kσ(p, q) dµ(p) =

∫
M
Kσ(p, q) dµ(q) = 1.

Thus, the discretized kernel matrix can be viewed as doubly-stochastic.

Figure 3 shows the heat kernel for bandwidth 0.01 and 1 for L-shaped

domain. The kernel follows the shape of the irregular domain.

3.1. Heat kernel on spheres

On a two-sphere, the heat kernel is analytically given in terms of the spher-

ical harmonics Ylm [14]:

Kσ(p, q) =
∞∑
l=0

l∑
m=−l

e−l(l+1)σYlm(p)Ylm(q). (3.2)

On a three-sphere, the heat kernel is analytically given in terms of the

hyperspherical harmonics Znlm [21, 27, 26, 25]:

Kσ(p, q) =
∞∑
l=0

l∑
m=−l

e−l(l+2)σZlmn(p)Zlmn(q).
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The hyperspherical harmonics Zlmn(p) with p = (β, θ, φ) are given by

Zlmn(β, θ, φ) = 2l+1/2

√
(n+ 1)Γ(n− l + 1)

πΓ(n+ l + 2)
Γ(l + 1) sinl β Gl+1

n−l(cosβ)Ylm(θ, φ),

where (β ∈ [0, π], θ ∈ [0, π], φ ∈ [0, 2π]), Gl+1
n−1 are the Gegenbauer (ul-

traspherical) polynomials, and Ylm are the 3D spherical harmonics. The

Gegenbauer polynomials can be expressed in terms of the Gaussian (ordi-

nary) hypergeometric function:

Gλα(x) =
Γ(α+ 2λ)

α!Γ(2λ)
2F 1(−α, α+ 2λ;λ+

1

2
;

1

2
(1− x)).

The hyperpsherical harmonics form an orthonormal basis on the hyper-

sphere:∫ 2π

0

∫ π

0

∫ π

0

Zlmm(β, θ, φ)Zl′m′n′(β, θ, φ) sin2 β sin θdβdθdφ = δnn′δll′δmm′ .

3.2. Heat kernel on graphs

On a graph, the discrete heat kernel Kσ has a finite expansion and the

simplicity in the algebraic representation makes it easier to manipulate.

Kσ is a positive definite symmetric matrix of size p× p given by

Kσ =

p∑
j=1

e−λjσψjψ
T
j , (3.3)

where σ is called the bandwidth of the kernel. Alternately, we can write

(3.3) as

Kσ = Ψe−σΛΨT,

where e−σΛ is the matrix logarithm of Λ. To see positive definiteness of the

kernel, for any nonzero x ∈ Rp, note

xTKσx =

p∑
j=1

e−λjσxTψjψ
T
j x

=

p∑
j=1

e−λjσ(ψT
j x)2 > 0.

When σ = 0, K0 = Ip, identity matrix. When σ =∞, by interchanging the

sum and the limit, we obtain

K∞ = ψ1ψ
T
1 = 11T/p.
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K∞ is a degenerate case and the kernel is no longer positive definite. Other

than these specific cases, the heat kernel is not analytically known in arbi-

trary graphs.

Heat kernel is doubly-stochastic [10] so that

Kσ1 = 1, 1TKσ = 1T.

Thus, Kσ is a probability distribution along columns or rows.

Just like the continuous counterpart, the discrete heat kernel is also

multiscale and has the scale-space property. Note

K2
σ =

p∑
i,j=1

e−(λi+λj)σψiψ
T
i ψjψ

T
j

=

p∑
j=1

e−2λjσψjψ
T
j = K2σ.

We used the orthonormality of eigenvectors. Subsequently, we have

Kn
σ = Knσ

for any integer n ≥ 0.

4. Heat kernel smoothing

The concept of heat kernel smoothing was introduced in [17, 16] in the

context of smoothing human cortical surface data. The original formula-

tion used the tangent space approximation. The spectral version using LB-

eigenfunction was later developed [40, 15]. Heat kernel smoothing of func-

tional measurement f(p) is then defined as

Kσ ∗ f(p) =

∫
M
Kσ(p, q)f(q) dµ(q)

=

∞∑
j=0

e−λjσfjψj(p),

where

fj = 〈f, ψj〉 =

∫
M
f(p)ψj(p) dµ(p)

are Fourier coefficients [17]. It is well known that heat kernel smoothing is

the unique solution of an isotropic heat diffusion [38].

Theorem 4.1: For an arbitrary self-adjoint differential operator ∆ and
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f ∈ L2(M), the unique solution of the Cauchy problem

∂g(p, σ)

∂σ
+ ∆g(p, σ) = 0, g(p, σ = 0) = f(p) (4.1)

is given by

g(p, σ) =
∞∑
j=0

e−λjσfjψj(p). (4.2)

Proof: The statement is first given in [13] with heuristic proof. Here we

provide a more rigorous proof. We first prove g(p, σ) ∈ L2(M). Since g(p, σ)

is the solution to (4.1), multiplying (4.1) with g(p, σ) and integrating on

[0, T ]×M, we obtain∫ T

0

∫
M

∂g(p, σ)

∂t
g(p, σ) dµ(p) dσ +

∫ T

0

∫
M

∆g(p, σ)g(p, σ) dµ(p) dσ = 0,

where T > 0 is total diffusion time. Hence, it holds that

1

2

∫
M

(
g(p, T )2 − g(p, 0)2

)
dµ(p) +

∫ T

0

〈∆g, g〉 dσ = 0.

Since ∆ is self-adjoint,

〈∆g, g〉 ≥ 0.

Thus,

‖g(·, T )‖22 =

∫
M
g(p, T )2 dµ(p)

=

∫
M
g(p, 0)2 dµ(p)− 2

∫ T

0

〈∆g, g〉 dσ

≤
∫
M
g(p, 0)2 dµ(p) =

∫
M
f(p)2 dµ(p) = ‖f‖22 <∞,

where ‖ · ‖2 is the L2-norm.

Since eigenfunctions ψj form an orthonormal basis inM, for each fixed

σ, g(p, σ) can be uniquely written as a Fourier series

g(p, σ) =
∞∑
j=0

cj(σ)ψj(p). (4.3)

Then

∆g(p, σ) =
∞∑
j=0

cj(σ)λjψj(p). (4.4)
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Substituting (4.3) and (4.4) into (4.1), we obtain

∂cj(σ)

∂σ
+ λjcj(σ∆a) = 0 (4.5)

for all j. The solution of equation (4.5) is given by cj(σ) = bje
−λjσ. So we

have a solution

g(p, σ) =
∞∑
j=0

bje
−λjσψj(p).

At σ = 0, we have

g(p, 0) =
∞∑
j=0

bjψj(p) = f(p).

The coefficients bj must be given by the unique Fourier coefficients, i.e.,

bj = 〈f, ψj〉 = fj .

Since heat kernel smoothing is the solution of diffusion equation, it

satisfies the scale-space property.

Theorem 4.2: Denote the k-fold iterated kernel as

K(k)
σ = Kσ ∗ · · · ∗Kσ︸ ︷︷ ︸

k times

.

Then we have

Kkσ ∗ f = K(k)
σ ∗ f. (4.6)

Proof: K
(2)
σ ∗ f is equivalent to the diffusion of signal f after time 2σ.

Hence we have

K(2)
σ f = K2σ ∗ f.

Arguing inductively we see that the general statement holds.

Note an alternate proof can be obtained by noting that K
(k)
σ is the

density of the sum of k independent and identically distributed random

variables in M. Heat kernel with a large bandwidth is equivalent to the

multiple applications of heat kernel smoothing with a smaller bandwidth.

The property (4.6) was used to approximate heat kernel smoothing with
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Fig. 4. Top left to right: 3D lung vessel tree. Gaussian noise is added to one of the

coordinates. Heat kernel smoothing with bandwidth 0.01, 0.1, 1 and 10000.

multiple applications of Gaussian kernel smoothing with small bandwidth

[17]. If we change the scale to 2σ = τ2, (4.6) takes a slightly different form:

K(k)
τ ∗ f = K√kτ ∗ f.

4.1. Asymptotics

As σ → 0, Kσ(p, q) becomes the Dirac-delta function δ(p − q) so the heat

kernel smoothing becomes unbiased as σ → 0, i.e.,

lim
σ→0

Kσ ∗ f(p) = f(p).

Theorem 4.3: For f ∈ L2(M) with µ(M) ≤ ∞, the heat kernel smoothing

converges to the mean signal over M pointwisely

lim
σ→∞

Kσ ∗ f(p) =
1

µ(M)

∫
M
f(p) dµ(p),

for all p ∈M.
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Proof: The statement is given in [17, 38]. Since Kσ ∗ f is bounded, we can

interchange the limit and summation.

lim
σ→∞

Kσ ∗ f = lim
σ→∞

∞∑
j=0

e−λjσfjψj(p)

=
∞∑
j=0

lim
σ→∞

e−λjσfjψj(p)

= f0ψ0(p)

=
1

µ(M)

∫
M
f dµ(p).

Theorem 4.3 can be used to identify the number of disconnected struc-

tures in very complex structures. Figure 4 shows a part of lung vessel tree

obtained from computed tomography (CT) [19, 50]. Gaussian noise is added

to one of the coordinates. 3D volumetric heat kernel smoothing with band-

width 0.01, 0.1, 1 and 10000 is performed on voxels. At the bandwidth

10000, heat kernel smoothing is almost reaching the steady state. Differ-

ently colored vessel tree shows they are disconnected structures. There are

total 7 disconnected structures.

Since ψ0 = 1/
√
µ(M), we have

Kσ ∗ f(p) =

∫
M f(p) dµ(p)

µ
(M) + f1e

−λ1σψ1(p) +R(σ, p), (4.7)

where the first term is the average signal, f1 is a constant and the remaining

term R goes to 0 faster than e−λ1σ as σ →∞ [2]. Due to expansion (4.7),

the behavior of heat kernel smoothing is basically governed by the second

eigenfunction ψ1 for large bandwidth.

4.2. Inequalities

We are interested in bounding heat kernel smoothing Kσ ∗f(p). We present

few useful inequalities involving heat kernel smoothing.

Theorem 4.4: Conservation of signal:∫
M
Kσ ∗ f(p) dµ(p) =

∫
M
f(p) dµ(p).
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Fig. 5. Heat kernel smoothing on the surface coordinates of hippocampus mesh with

different bandwidth.

Proof: This is due to the fact that Kσ is a probability distribution inM,

i.e., ∫
M
Kσ(p, q) dµ(q) = 1

for all p ∈M. Then∫
M
Kσ ∗ f(p) dµ(p) =

∫
M
f(p)

∫
M
Kσ(p, q) dµ(q) dµ(p)

=

∫
M
f(p) dµ(p).

Theorem 4.5: For f ∈ L1(M),

‖Kσ ∗ f‖1 ≤ ‖f‖1.

Proof: For f ≥ 0, from Theorem 4.4, trivially we have equality

‖Kσ ∗ f‖1 = ‖f‖1.

If f ≤ 0, then |f | = −f and we have the same result. If the sign of f is not

constant, consider decomposition f = f+ + f−, where

f+(p) =

{
f(p), f(p) > 0,

0, f(p) ≤ 0.
f−(p) =

{
f(p), f(p) < 0,

0, f(p) ≥ 0.

We can write |f | as

|f | = |f+|+ |f−|.
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Then we have

‖Kσ ∗ f‖1 =

∫
M

∣∣∣Kσ ∗ f+(p) +Kσ ∗ f−(p)
∣∣∣ dµ(p) (4.8)

≤
∫
M

∣∣∣Kσ ∗ f+(p)
∣∣∣+
∣∣∣Kσ ∗ f−(p)

∣∣∣ dµ(p)

= ‖f+‖1 + ‖f−‖1
= ‖f‖1.

Only when the sign of f does not change, Theorem 4.5 is equality.

Consider the following counter example. Consider M1,M2 ⊆ M,M1 ∩
M2 = ∅,M1 ∪M2 =M, such that∫

M1

Kσ(p, q) dµ(q) = 0.5,

∫
M2

Kσ(p, q) dµ(q) = 0.5.

Set f(p) as

f(p) =

{
1, p ∈M1,

−1, p ∈M2.

Then

‖Kσ ∗ f‖1 = ‖
∫
M1

Kσ(p, q)(1) dµ(q) +

∫
M2

Kσ(p, q)(−1) dµ(q)‖1

= ‖0.5 + (−0.5)‖1 = 0.

While

‖f‖1 =

∫
M

1 dµ(p) = µ(M).

We prove similar result for other Ln-norms.

Theorem 4.6: For f ∈ Ln(M), we have norm contraction

‖Kσ1
∗ f‖n ≤ ‖Kσ2

∗ f‖n ≤ · · ·

for σ1 ≥ σ2 ≥ · · · ≥ 0 and n ≥ 2.

Proof: Consider g ∈ Ln(M). Based on Jensen’s inequality and the fact

that Kσ is a probability distribution, we have

‖Kσ ∗ g‖nn =

∫
M

∣∣∣ ∫
M
Kσ(p, q)g(q) dµ(q)

∣∣∣n dµ(p)

≤
∫
M

∫
M
Kσ(p, q)|g(q)|n dµ(q) dµ(p)

= ‖Kσ ∗ (|g|n)‖1 = ‖g‖nn. (4.9)
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Equation (4.9) is due to Theorem 4.5. Now let σ = σ1 and g = Kσ1−σ2 ∗ f .

Then we have

‖Kσ1
∗ f‖nn = ‖Kσ1−σ2

∗ (Kσ2
∗ f)‖nn ≤ ‖Kσ2

∗ f‖nn.

For L2-norm, Theorem 4.6 is the consequence of the Hilbert space iso-

morphism. Note

‖Kσ ∗ f‖2 = ‖
∑
j

e−λjσfjψj‖2 =
∞∑
j=0

e−2λjσf2
j .

Since
∑∞
j=0 e

−2λjσf2
j ≤

∑∞
j=0 f

2
j , we have ‖Kσ ∗ f‖2 ≤ ‖f‖2. Theorem 4.6

can be used to bound Kσ ∗ f(p) uniformly. From Hölder’s inequality and

from Theorem 4.6, for each fixed p,∣∣Kσ ∗ f(p)
∣∣ ≤ ∫

M
Kσ(p, q)

∣∣f(q)
∣∣ dµ(q)

≤ µ(M)1/2‖Kσ ∗ f‖2
≤ µ(M)1/2‖f‖2. (4.10)

Note we also have |Kσ ∗ f(p)| ≤ supp∈M |f(p)|.

Theorem 4.7: For f ∈ L∞(M), we have norm contraction

‖Kσ1
∗ f‖∞ ≤ ‖Kσ2

∗ f‖∞ ≤ · · ·

for σ1 ≥ σ2 ≥ · · · ≥ 0.

Proof: Consider g ∈ L∞(M). We have

|Kσ ∗ g(p)| ≤
∫
M
Kσ(p, q)|g(q)| dµ(q)

≤ ‖g‖∞
∫
M
Kσ(p, q) dµ(q)

= ‖g‖∞
for any p ∈M. Hence,

‖Kσ ∗ g‖∞ = sup
p∈M

|Kσ ∗ g(p)| ≤ ‖g‖∞.

Now let σ = σ1 and g = Kσ1−σ2
∗ f . Then we have

‖Kσ1
∗ f‖∞ = ‖Kσ1−σ2

∗ (Kσ2
∗ f)‖∞ ≤ ‖Kσ2

∗ f‖∞.
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The result of smoothing is often used in quantifying a collection of

shapes and functions in medical imaging [16, 15]. Thus, we investigate the

distance between two different heat kernel smoothings and how it changes

from before smoothing. We define Ln-distance between functions f, g ∈
Ln(M) as that

dn(f, g) = ‖f − g‖n.

Then we can show that the distance between functions decreases after

heat kernel smoothing.

Theorem 4.8: Heat kernel smoothing is a contraction map in Ln(M) in

a sense that for any f, g ∈ Ln(M),

dn(Kσ1
∗ f,Kσ1

∗ g) ≤ dn(Kσ2
∗ f,Kσ2

∗ g)

for σ1 ≥ σ2 ≥ 0 and n ≥ 1.

Proof: It follows from Theorems 4.2 (scale-space property) that

Kσ1 ∗ f = Kσ1−σ2 ∗Kσ2 ∗ f.

From Theorem 4.6,

‖Kσ1
∗ f‖n = ‖Kσ1−σ2

∗ (Kσ2
∗ f)‖n ≤ ‖Kσ2

∗ f‖n

for σ1 ≥ σ2 ≥ 0.

As a special case of Theorem 4.8, we have

dn(Kσ ∗ f,Kσ ∗ g) ≤ dn(f, g).

Theorem 4.8 also holds true for L∞-norm as well.

4.3. Discrete heat kernel smoothing on graphs

Discrete heat kernel smoothing of measurement vector f = (f1, f2, . . . , fp)
T

on a graph is defined similarly as

Kσ ∗ f = Kσf =

p∑
j=0

e−λjσ f̃jψj . (4.11)

This is the discrete analogue of heat kernel smoothing first defined in [17]. In

discrete setting, the convolution ∗ is simply a matrix multiplication. Then

K0 ∗ f = f
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and

K∞ ∗ f = f̄1,

where f̄ =
∑p
j=1 fj/p is the mean of signal f over every node. When the

bandwidth is zero, we are not smoothing data. As the bandwidth increases,

the smoothed signal converges to the sample mean of all values. Then we

have similar results for the discrete version as well. Here we only show the

contraction mapping property simply to illustrate the differences.

Theorem 4.9: Heat kernel smoothing is a contraction mapping with re-

spect to the ln-norm for vectors, i.e.,

‖Kσ ∗ f‖nn ≤ ‖f‖nn.

Proof: Let kernel matrix Kσ = (kij). Then we have inequality

‖Kσ ∗ f‖nn =

p∑
i=1

p∑
j=1

|kijfj |n ≤
p∑
j=1

|fj |n.

We used Jensen’s inequality and doubly-stochastic property of the heat

kernel.

A similar result can be obtained for l∞-norm.

5. Statistical properties of heat kernel smoothing

Often observed noisy data on graphs is smoothed to increase the signal-

to-noise ratio (SNR) and increases the statistical sensitivity [15]. We are

interested in knowing how heat kernel smoothing will have effects on the

statistical properties on the data. In practice, functional data Y (p) is mod-

eled as a random field:

Y (p) = f(p) + e(p), (5.1)

where unknown deterministic signal f ∈ L2(M) and ε is a zero-mean ran-

dom field with some covariance function Re(p, q), i.e.,

Re(p, q) = E[e(p)e(q)].

We will further assume constant variance field, i.e.,

Re(p, p) = Ve(p) = Ee2(p) = const.

for all p ∈M.
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The covariance functions are often unimodal and isotropic in M. A

function is isotropic a manifold in the following sense. Consider line segment

C ⊂M connecting p and q and parameterized by γc(t) with γc(0) = p and

γc(1) = q. In the Cartesian coordinates, γc(t) = (γ1
c (t), . . . , γnc (t)) ∈ Rn.

The length of C is given by∫ 1

0

〈dγc
dt
,
dγc
dt
〉1/2 dt =

∫ 1

0

[∑
i,j

gij
dγic
dt

dγjc
dt

]1/2
dt

where the inner product 〈·, ·〉 is with respect to the tangent space of the

manifold. Then the geodesic distance between p and q is defined as the

minimizer

dg(p, q) = min
C

∫ 1

0

〈dγc
dt
,
dγc
dt
〉1/2 dt.

It is usually given as the solution of the Euler equation and numerical tech-

niques are available for polygonal surfaces [49]. Suppose the covariance func-

tion of e is of unimodal isotropic function of the form Re(p, q) = ρ(d(p, q))

where d(p, q) is the geodesic distance between p and q and ρ is some non-

increasing function. This is an often encountered covariance function shape

in applications. Note d(p, p) = 0 and Re(p, p) = ρ(0). Noise e(p) can be fur-

ther modeled as Gaussian white noise, i.e., Brownian motion or the general-

ized derivatives of Wiener process, whose covariance function is Dirac-delta,

i.e.,

Re(p, q) = δ(p− q).

Often observed functional data Y (p) is smoothed with heat kernel Kσ

to increase the signal-to-noise ratio (SNR) and increases the statistical sen-

sitivity [15]. Once heat kernel smoothing is applied to (5.1), we have

Kσ ∗ Y (p) = Kσ ∗ f(p) +Kσ ∗ e(p). (5.2)

For Gaussian white noise e, its covariance function of Kσ ∗ e is given by

RKσ∗e(p, q) =

∫
M
Kσ(p, r)Kσ(q, r) dµ(r).

The variance at p is then

V
[
Kσ ∗ e(p)

]
= RKσ∗e(p, p) =

∫
M
K2
σ(p, r) dµ(r).

The variance of data will be often reduced after heat kernel smoothing

in the following sense [17, 16]. This is formulated rigorously as follows.
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We are interested in determining how the statistical properties of signal

change between (5.1) and (5.10). This is needed to study the behavior of

collection of heat kernel smoothed functions statistically. We can show that

the variance of smoothed noise is smaller than the variance of noise.

Theorem 5.1:

V[Kσ ∗ Y (p)] ≤ VY (p)

for all p ∈M.

Proof: Note that

Ve(p) = VY (p)

V[Kσ ∗ Y (p)] = V[Kσ ∗ e(p)].

Since E
(
Kσ ∗ e(p)

)
= 0,

V[Kσ ∗ e(p)] = E
[(
Kσ ∗ e(p)

)2]
.

It follows from Theorem 4.4 and Jensen’s inequality that

E
[ ∫
M
K(p, q)e(q) dµ(q)

]2
≤ E

[ ∫
M
K(p, q)e(q)2 dµ(q)

]
= Ee2(p)

∫
M
K(p, q) dµ(q)

= Ee2(p).

Theorem 5.1 shows heat kernel smoothing reduces the point-wise variabil-

ity of functional signal. Note the usual t-statistic often used in anatom-

ical shape discrimination analysis [16, 15] is inversely proportional to the

standard deviation. Since heat kernel smoothing reduces the variability,

t-statistics will likely increase.

5.1. Heat kernel regression on manifolds

Consider subspace Hk ⊂ L2(M) spanned by the orthonormal basis {ψj},
i.e.,

Hk = {
k∑
j=0

βjψj(p) : βj ∈ R}.
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Then the least squares estimation (LSE) of unknown signal f in Hk in

model (5.1) is given by the shortest distance from observed signal Y to Hk:

f̂(p) = arg min
h∈Hk

∫
M

∣∣Y (p)− h(p)
∣∣2 dµ(p) =

k∑
j=0

Yjψj(p), (5.3)

where Yj = 〈Y, ψj〉 are the Fourier coefficients. This is the usual Fourier

series expansion that tends to suffer the Gibbs phenomenon, i.e., ringing

artifact, for compact surfaces [13, 22]. The Gibbs phenomenon can be ef-

fectively removed if the Fourier series expansion converges fast enough as

the number of basis functions goes to infinity. By weighting the Fourier co-

efficients exponentially smaller, we can make the representation converges

faster; this can be achieved by additionally weighting the squared residuals

in equation (5.3) with the heat kernel:

f̂(p) = arg min
h∈Hk

∫
M

∫
M
Kσ(p, q)

∣∣∣Y (q)− h(p)
∣∣∣2 dµ(q) dµ(p). (5.4)

The optimization (5.4) has the following analytic expression:

Theorem 5.2:

f̂(p) = arg min
h∈Hk

∫
M

∫
M
K(p, q)

∣∣∣Y (q)− h(p)
∣∣∣2 dµ(q) dµ(p) =

k∑
j=0

τjYjψj ,

where Yj = 〈Y, ψj〉 are Fourier coefficients.

Proof: Any function h ∈ Hk can be expressed as

h(p) =
k∑
j=0

βjψj(p). (5.5)

Then by plugging (5.5) into the inner integral I(p), it becomes

I(p) =

∫
M
Kσ(p, q)

∣∣∣∣Y (q)−
k∑
j=0

βjψj(p)

∣∣∣∣2 dµ(q).

Simplifying the expression, we obtain

I(p) =

k∑
j=0

k∑
j′=0

ψj(p)ψj′(p)βjβj′ − 2Kσ ∗ Y (p)

k∑
j=0

ψj(p)βj +Kσ ∗ Y 2(p).

(5.6)
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The kernel can be written as

Kσ(p, q) =
∞∑
j′=0

τj′ψj′(p)ψj′(q) (5.7)

and the convolution is written as

Kσ ∗ Y (p) =
∞∑
j′=0

τj′Yj′ψj′(p).

Since I is an unconstrained positive semidefinite quadratic program

(QP) in βj , there is no unique global minimizer of I without additional

linear constraints. Integrating I further with respect to dµ(p), we collapse

(5.6) to a positive definite QP, which yields a unique global minimizer:∫
M
I(p) dµ(p) =

k∑
j=0

β2
j − 2

k∑
j=0

τjYjβj + const.

The minimum of the above integral is obtained when all the partial deriva-

tives with respect to βj vanish, i.e.∫
M

∂I

∂βj
dµ(p) = 2βj − 2τjYj = 0

for all j. Hence
∑k
j=0 τjYjψj must be the unique minimizer.

Theorem 5.2 generalizes the weighted spherical harmonic (SPHARM)

representation on a unit sphere to an arbitrary manifold [14]. Theorem

5.2 implies that the kernel regression can be performed by simply com-

puting the Fourier coefficients fj = 〈f, ψj〉 without doing any numerical

optimization. The numerically difficult optimization problem is reduced to

the problem of computing Fourier coefficients. If the kernel K is a Dirac-

delta function, the kernel regression simply collapses to the least squares

estimation (LSE) which results in the standard Fourier series, i.e.

f̂(p) = arg min
h∈Hk

∫
M

∣∣∣Y (q)− h(q)
∣∣∣2 dµ(q) =

k∑
j=0

fjψj .

It can be also shown that as k →∞, the kernel regression

f̂ =
k∑
j=0

τjYjψj
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converges to convolution Kσ∗Y establishing the connection to the manifold-

based kernel smoothing framework [3, 17]. Hence, asymptotically the pro-

posed kernel regression should inherit many statistical properties of kernel

smoothing.

5.2. Statistical properties on graphs

Similar results can be obtained for graph data structures. Consider the

following model:

f = µ+ e,

where µ is an unknown signal and ε is zero mean noise. Let e = (e1, . . . , ep)
T.

Denote E as expectation and V as covariance. It is natural to assume that

the variability of noises at different nodes j is identical, i.e.,

Ee2
1 = Ee2

2 = · · · = Ee2
p. (5.8)

Further, we assume that data at two nodes i and j to have less correlation

when the distance between the nodes is large. So covariance matrix Re =

Ve = E(eeT) = (rij) can be given by

rij = ρ(dij) (5.9)

for some decreasing function ρ and geodesic distance dij between nodes

i and j. Note rjj = ρ(0) with the understanding that djj = 0 for all j.

The off diagonal entries of Re are smaller than the diagonal. Noise e can

be further modeled as the discrete Gaussian white noise whose covariance

matrix elements are Kroneker-delta δij with δij = 1 if i = j and 0 otherwise.

Thus,

Re = E(eeT) = Ip,

the identity matrix of size p× p. Since δjj ≥ δij , Gaussian white noise is a

special case of (5.9). After heat kernel smoothing, we have

Kσ ∗ f = Kσ ∗ µ+Kσ ∗ e. (5.10)

For Re = Ip, the covariance matrix of smoothed noise is simply given as

RKσ∗e = KσE(eeT)Kσ = K2
σ = K2σ.

We used the scale-space property of heat kernel. In general, the covariance

matrix of smoothed data Kσ ∗ e is given by

RKσ∗e = KσE(eeT)Kσ = KσReKσ.

Other than these differences, similar analogous results can be obtained.
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5.3. Persistent homology in heat kernel smoothing

In persistent homology, a point cloud is used to build a Rips filtration

[1, 7, 9]. Similarly, we can build Rips filtration in a function space. Given

a collection of functional measurements in Ln(M), heat kernel smoothing

induces a Rips filtration in Ln(M) if we take the functions as a point cloud

and build a filtration using Ln-norm as distance.

Theorem 5.3: Let Aσ = {f ∈ Ln(M) : ‖Kσ ∗f‖n ≤ h}. Then Aσ induces

filtration

Aσ1 ⊂ Aσ2 ⊂ · · ·

for any σ1 ≥ σ2 ≥ · · · ≥ 0, h ≥ 0 and n ≥ 1.

Proof: Suppose f ∈ Aσ1
. From Theorem 4.6 (norm contraction),

‖Kσ1
∗ f‖n ≤ ‖Kσ2

∗ f‖n ≤ h.

Then f ∈ Aσ2 and the result follows.

A similar result can be obtained for L∞(M) space as well. Theorem 5.3

build filtrations on the space of functions. We can also build a filtration

directly in manifold M as well.

Theorem 5.4: Let Bσ = {p ∈M : V[Kσ ∗ Y (p)] ≤ h}. Then Bσ satisfies

Bσ1
⊂ Bσ2

⊂ · · ·B0 (5.11)

if σ1 ≥ σ2 ≥ · · · ≥ 0 for any h ≥ 0 and n ≥ 1.

Proof: Let p ∈ Bσ1
. Then from Theorem 5.1,

V[Kσ1
∗ Y (p)] = V[Kσ1−σ2

∗ (Kσ2
∗ Y )(p)]

≤ V[Kσ2 ∗ Y (p)] ≤ h.

Thus, p ∈ Bσ2 .

6. Discussion

For irregular domains in images, boundary shapes are often complex. This

causes the geometric shape of the boundary to strongly bias smoothing.

[43] proposed more natural boundary conditions that reduces the bound-

ary induced bias in smoothing by using the Neumann boundary condition

in solving a partial different equation. The heat kernel smoothing method



August 29, 2019 BC: 11272 - Lecture Note Series, IMS, NUS — Review Vol. 9in x 6in 08 page 206

206 M. K. Chung & Y. Wang

proposed here is based on the Dirichlet boundary condition although ex-

tending it to the Neumann boundary condition is also possible. For closed

surfaces with no boundary, there is no need to consider for the boundary

condition.
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